Dong Silong, Wen Guobin, Yang Xinyu, Zhang Xiaowen, Liu Shuxuan, Xiong Haoyang, Liu Yinyi, Zong Kai, Li Hao, Li Yifan, Cui Yi, Ren Bohua, Wang Xin, Jin Mingliang, Chen Zhongwei
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong, 510006, China.
Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China.
Adv Sci (Weinh). 2025 Jul;12(28):e2502306. doi: 10.1002/advs.202502306. Epub 2025 May 14.
Gas-water/catalyst triple-phase interface and the microenvironment play critical roles in the reaction kinetics and production rate of electrochemical carbon dioxide reduction reactions (CORR), which steer concerted proton-electron transfer steps. Inspired by Tillandsia leaves, which efficiently capture HO and CO from the air, copper nanosheets with dual-functional channels are we designed: the superhygroscopic network enables capillary condensation, converting HO(g) into HO(l) to form HO channels that ensure a stable supply of protons, while the CO channels formed by the microporous structure enhance the diffusion of CO, thus enriching the carbon source. This synergistic design creates an optimal microenvironment for CO conversion by simultaneously delivering both protons and CO to the reaction interface. Time-of-flight secondary-ion mass spectroscopy (TOF-SIMS), X-ray absorption spectroscopy (XAS) and multiphysics simulations further reveal the designed HO and CO channels in the microenvironment to boost mass transports. Hence, the Faradaic efficiency (FE) for ethylene reaches up to 96% at -200 mA cm with such localized triple-phase interfaces, which simultaneously exhibits ultra-high stability for over 170 h in the membrane electrode assembly (MEA) system. This strategy provides a construction methodology of HO and CO channels for improving the selectivity and stability of electrochemical CO upgrades.
气-水/催化剂三相界面和微环境在电化学二氧化碳还原反应(CORR)的反应动力学和产率中起着关键作用,该反应控制着质子-电子协同转移步骤。受铁兰叶片从空气中有效捕获水和二氧化碳的启发,我们设计了具有双功能通道的铜纳米片:超吸湿网络实现毛细管冷凝,将气态水转化为液态水以形成水通道,确保质子的稳定供应,而由微孔结构形成的二氧化碳通道则增强了二氧化碳的扩散,从而丰富了碳源。这种协同设计通过同时将质子和二氧化碳输送到反应界面,为二氧化碳转化创造了最佳微环境。飞行时间二次离子质谱(TOF-SIMS)、X射线吸收光谱(XAS)和多物理场模拟进一步揭示了微环境中设计的水和二氧化碳通道可促进物质传输。因此,在-200 mA cm²时,这种局部三相界面的乙烯法拉第效率(FE)高达96%,同时在膜电极组件(MEA)系统中表现出超过170小时的超高稳定性。该策略提供了一种构建水和二氧化碳通道的方法,以提高电化学二氧化碳升级反应的选择性和稳定性。