Suppr超能文献

沸石中铝核磁共振建模的必要性:温度、拓扑结构和水的影响。

The need for modelling of Al NMR in zeolites: the effect of temperature, topology and water.

作者信息

Lei Chen, Erlebach Andreas, Brivio Federico, Grajciar Lukáš, Tošner Zdeněk, Heard Christopher J, Nachtigall Petr

机构信息

Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague 128 43 Prague 2 Czech Republic

出版信息

Chem Sci. 2023 Aug 3;14(34):9101-9113. doi: 10.1039/d3sc02492j. eCollection 2023 Aug 30.

Abstract

Solid state (ss-) Al NMR is one of the most valuable tools for the experimental characterization of zeolites, owing to its high sensitivity and the detailed structural information which can be extracted from the spectra. Unfortunately, the interpretation of ss-NMR is complex and the determination of aluminum distributions remains generally unfeasible. As a result, computational modelling of Al ss-NMR spectra has grown increasingly popular as a means to support experimental characterization. However, a number of simplifying assumptions are commonly made in NMR modelling, several of which are not fully justified. In this work, we systematically evaluate the effects of various common models on the prediction of Al NMR chemical shifts in zeolites CHA and MOR. We demonstrate the necessity of modelling; in particular, taking into account the effects of water loading, temperature and the character of the charge-compensating cation. We observe that conclusions drawn from simple, high symmetry model systems such as CHA do not transfer well to more complex zeolites and can lead to qualitatively wrong interpretations of peak positions, Al assignment and even the number of signals. We use machine learning regression to develop a simple yet robust relationship between chemical shift and local structural parameters in Al-zeolites. This work highlights the need for sophisticated models and high-quality sampling in the field of NMR modelling and provides correlations which allow for the accurate prediction of chemical shifts from dynamical simulations.

摘要

固态(ss-)铝核磁共振是用于沸石实验表征的最有价值的工具之一,这得益于其高灵敏度以及能够从光谱中提取的详细结构信息。不幸的是,ss-核磁共振的解释很复杂,铝分布的确定通常仍然不可行。因此,作为支持实验表征的一种手段,铝ss-核磁共振光谱的计算建模越来越受欢迎。然而,在核磁共振建模中通常会做出一些简化假设,其中一些假设并不完全合理。在这项工作中,我们系统地评估了各种常见模型对CHA和MOR沸石中铝核磁共振化学位移预测的影响。我们证明了建模的必要性;特别是要考虑水负载、温度和电荷补偿阳离子性质的影响。我们观察到,从简单的高对称性模型体系(如CHA)得出的结论不能很好地应用于更复杂的沸石,并且可能导致对峰位置、铝归属甚至信号数量的定性错误解释。我们使用机器学习回归来建立铝沸石中化学位移与局部结构参数之间简单而稳健的关系。这项工作强调了在核磁共振建模领域中需要复杂的模型和高质量的采样,并提供了相关性,从而能够根据动力学模拟准确预测化学位移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7389/10466278/a468956618aa/d3sc02492j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验