Suppr超能文献

用于揭示自组装动力学慢集体变量的GraphVAMPnets

GraphVAMPnets for uncovering slow collective variables of self-assembly dynamics.

作者信息

Liu Bojun, Xue Mingyi, Qiu Yunrui, Konovalov Kirill A, O'Connor Michael S, Huang Xuhui

机构信息

Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

J Chem Phys. 2023 Sep 7;159(9). doi: 10.1063/5.0158903.

Abstract

Uncovering slow collective variables (CVs) of self-assembly dynamics is important to elucidate its numerous kinetic assembly pathways and drive the design of novel structures for advanced materials through the bottom-up approach. However, identifying the CVs for self-assembly presents several challenges. First, self-assembly systems often consist of identical monomers, and the feature representations should be invariant to permutations and rotational symmetries. Physical coordinates, such as aggregate size, lack high-resolution detail, while common geometric coordinates like pairwise distances are hindered by the permutation and rotational symmetry challenges. Second, self-assembly is usually a downhill process, and the trajectories often suffer from insufficient sampling of backward transitions that correspond to the dissociation of self-assembled structures. Popular dimensionality reduction methods, such as time-structure independent component analysis, impose detailed balance constraints, potentially obscuring the true dynamics of self-assembly. In this work, we employ GraphVAMPnets, which combines graph neural networks with a variational approach for Markovian process (VAMP) theory to identify the slow CVs of the self-assembly processes. First, GraphVAMPnets bears the advantages of graph neural networks, in which the graph embeddings can represent self-assembly structures in high-resolution while being invariant to permutations and rotational symmetries. Second, it is built upon VAMP theory, which studies Markov processes without forcing detailed balance constraints, which addresses the out-of-equilibrium challenge in the self-assembly process. We demonstrate GraphVAMPnets for identifying slow CVs of self-assembly kinetics in two systems: the aggregation of two hydrophobic molecules and the self-assembly of patchy particles. We expect that our GraphVAMPnets can be widely applied to molecular self-assembly.

摘要

揭示自组装动力学的慢集体变量(CVs)对于阐明其众多动力学组装途径以及通过自下而上的方法推动先进材料新型结构的设计至关重要。然而,识别自组装的CVs存在若干挑战。首先,自组装系统通常由相同的单体组成,特征表示应对于排列和旋转对称不变。诸如聚集体尺寸等物理坐标缺乏高分辨率细节,而像成对距离等常见几何坐标则受到排列和旋转对称挑战的阻碍。其次,自组装通常是一个下坡过程,轨迹往往存在对应于自组装结构解离的向后转变采样不足的问题。流行的降维方法,如时间 - 结构独立成分分析,施加了详细平衡约束,可能掩盖自组装的真实动力学。在这项工作中,我们采用GraphVAMPnets,它将图神经网络与马尔可夫过程(VAMP)理论的变分方法相结合,以识别自组装过程的慢CVs。首先,GraphVAMPnets具有图神经网络的优势,其中图嵌入可以在高分辨率下表示自组装结构,同时对于排列和旋转对称不变。其次,它基于VAMP理论构建,该理论研究马尔可夫过程而不强制详细平衡约束,这解决了自组装过程中的非平衡挑战。我们展示了GraphVAMPnets在两个系统中识别自组装动力学慢CVs的能力:两个疏水分子的聚集和补丁粒子的自组装。我们期望我们的GraphVAMPnets能够广泛应用于分子自组装。

相似文献

1
GraphVAMPnets for uncovering slow collective variables of self-assembly dynamics.
J Chem Phys. 2023 Sep 7;159(9). doi: 10.1063/5.0158903.
2
Permutationally Invariant Networks for Enhanced Sampling (PINES): Discovery of Multimolecular and Solvent-Inclusive Collective Variables.
J Chem Theory Comput. 2024 Jan 9;20(1):178-198. doi: 10.1021/acs.jctc.3c00923. Epub 2023 Dec 27.
3
Rotational diffusion affects the dynamical self-assembly pathways of patchy particles.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15308-13. doi: 10.1073/pnas.1513210112. Epub 2015 Nov 30.
4
An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes.
J Chem Theory Comput. 2023 Jul 25;19(14):4728-4742. doi: 10.1021/acs.jctc.3c00318. Epub 2023 Jun 29.
5
Discovering Reaction Pathways, Slow Variables, and Committor Probabilities with Machine Learning.
J Chem Theory Comput. 2023 Jul 25;19(14):4414-4426. doi: 10.1021/acs.jctc.3c00028. Epub 2023 May 24.
6
tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables.
J Chem Theory Comput. 2017 Jun 13;13(6):2440-2447. doi: 10.1021/acs.jctc.7b00182. Epub 2017 May 9.
8
Identification of kinetic order parameters for non-equilibrium dynamics.
J Chem Phys. 2019 Apr 28;150(16):164120. doi: 10.1063/1.5083627.
9
Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles.
J Chem Theory Comput. 2024 Sep 12;20(18):7775-84. doi: 10.1021/acs.jctc.4c00428.
10
Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
J Chem Phys. 2019 Jun 7;150(21):214114. doi: 10.1063/1.5092521.

引用本文的文献

1
Memory kernel minimization-based neural networks for discovering slow collective variables of biomolecular dynamics.
Nat Comput Sci. 2025 Jul;5(7):562-571. doi: 10.1038/s43588-025-00815-8. Epub 2025 Jun 10.
2
Molecular simulations of enzymatic phosphorylation of disordered proteins and their condensates.
Nat Commun. 2025 May 19;16(1):4649. doi: 10.1038/s41467-025-59676-4.
3
AMUSET-TICA: A Tensor-Based Approach for Identifying Slow Collective Variables in Biomolecular Dynamics.
J Chem Theory Comput. 2025 May 13;21(9):4855-4866. doi: 10.1021/acs.jctc.5c00076. Epub 2025 Apr 20.
6
Accelerating Molecular Dynamics through Informed Resetting.
J Chem Theory Comput. 2025 Jan 28;21(2):605-613. doi: 10.1021/acs.jctc.4c01238. Epub 2025 Jan 8.
7
Non-Markovian Dynamic Models Identify Non-Canonical KRAS-VHL Encounter Complex Conformations for Novel PROTAC Design.
JACS Au. 2024 Sep 24;4(10):3857-3868. doi: 10.1021/jacsau.4c00503. eCollection 2024 Oct 28.
9
CoVAMPnet: Comparative Markov State Analysis for Studying Effects of Drug Candidates on Disordered Biomolecules.
JACS Au. 2024 May 28;4(6):2228-2245. doi: 10.1021/jacsau.4c00182. eCollection 2024 Jun 24.
10
Information Bottleneck Approach for Markov Model Construction.
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.

本文引用的文献

1
Deep learning to decompose macromolecules into independent Markovian domains.
Nat Commun. 2022 Nov 19;13(1):7101. doi: 10.1038/s41467-022-34603-z.
3
Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of platinum(II) complexes.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2116543119. doi: 10.1073/pnas.2116543119. Epub 2022 Mar 17.
4
Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning.
JACS Au. 2021 Aug 4;1(9):1330-1341. doi: 10.1021/jacsau.1c00254. eCollection 2021 Sep 27.
6
Revealing Thermodynamics and Kinetics of Lipid Self-Assembly by Markov State Model Analysis.
J Am Chem Soc. 2020 Dec 23;142(51):21344-21352. doi: 10.1021/jacs.0c09343. Epub 2020 Dec 14.
7
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials.
Nat Commun. 2019 Jun 17;10(1):2667. doi: 10.1038/s41467-019-10663-6.
8
Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
J Chem Phys. 2019 Jun 7;150(21):214114. doi: 10.1063/1.5092521.
9
SchNet - A deep learning architecture for molecules and materials.
J Chem Phys. 2018 Jun 28;148(24):241722. doi: 10.1063/1.5019779.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验