College of Software, Xinjiang University, Urumqi, 830046, China.
People's Hospital of Xinjiang Uygur Autonomous Region, UrumqiXinjiang, 830001, China.
Med Biol Eng Comput. 2023 Nov;61(11):3123-3135. doi: 10.1007/s11517-023-02898-9. Epub 2023 Sep 1.
Parotid tumors are among the most prevalent tumors in otolaryngology, and malignant parotid tumors are one of the main causes of facial paralysis in patients. Currently, the main diagnostic modality for parotid tumors is computed tomography, which relies mainly on the subjective judgment of clinicians and leads to practical problems such as high workloads. Therefore, to assist physicians in solving the preoperative classification problem, a stacked generalization model is proposed for the automated classification of parotid tumor images. A ResNet50 pretrained model is used for feature extraction. The first layer of the adopted stacked generalization model consists of multiple weak learners, and the results of the weak learners are integrated as input data in a meta-classifier in the second layer. The output results of the meta-classifier are the final classification results. The classification accuracy of the stacked generalization model reaches 91%. Comparing the classification results under different classifiers, the stacked generalization model used in this study can identify benign and malignant tumors in the parotid gland effectively, thus relieving physicians of tedious work pressure.
腮腺肿瘤是耳鼻喉科最常见的肿瘤之一,而恶性腮腺肿瘤是导致患者面瘫的主要原因之一。目前,腮腺肿瘤的主要诊断方式是计算机断层扫描,主要依赖于临床医生的主观判断,导致工作量大等实际问题。因此,为了协助医生解决术前分类问题,提出了一种堆叠式综合模型,用于腮腺肿瘤图像的自动分类。使用预训练的 ResNet50 模型进行特征提取。采用的堆叠式综合模型的第一层由多个弱分类器组成,弱分类器的结果作为第二层元分类器的输入数据进行集成。元分类器的输出结果是最终的分类结果。堆叠式综合模型的分类准确率达到 91%。通过比较不同分类器下的分类结果,本研究中使用的堆叠式综合模型可以有效地识别腮腺的良恶性肿瘤,从而减轻医生的繁琐工作压力。