Nucleo de Investigacion en Ciencias de la Salud, Universidad Adventista de Chile, Chillan, Chile.
Centro de Enfermedades Respiratorias, Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile.
Sleep Breath. 2024 Mar;28(1):281-289. doi: 10.1007/s11325-023-02909-x. Epub 2023 Sep 1.
Novel wireless-based technologies can easily record pulse oximetry at home. One of the main parameters that are recorded in sleep studies is the time under 90% of SpO (T90%) and the oxygen desaturation index 3% (ODI-3%). We assessed the association of T90% and/or ODI-3% in two different scenarios (a community-based study and a clinical setting) with all-cause mortality (primary outcome).
We included all individuals from the Sleep Heart Health Study (SHHS, community-based cohort) and Santiago Obstructive Sleep Apnea (SantOSA, clinical cohort) with complete data at baseline and follow-up. Two measures of hypoxemia (T90% and ODI-3%) were our primary exposures. The adjusted hazard ratios (HRs) per standard deviation (pSD) between T90% and incident all-cause mortality (primary outcome) were determined by adjusted Cox regression models. In the secondary analysis, to assess whether T90% varies across clinical factors, anthropometrics, abdominal obesity, metabolic rate, and SpO, we conducted linear regression models. Incremental changes in R were conducted to test the hypothesis.
A total of 4323 (56% male, median 64 years old, follow-up: 12 years, 23% events) and 1345 (77% male, median 55 years old, follow-up: 6 years, 11.6% events) patients were included in SHHS and SantOSA, respectively. Every 1 SD increase in T90% was associated with an adjusted HR of 1.18 [95% CI: 1.10-1.26] (p value < 0.001) in SHHS and HR 1.34 [95% CI: 1.04-1.71] (p value = 0.021) for all-cause mortality in SantOSA. Conversely, ODI-3% was not associated with worse outcomes. R explains 62% of the variability in T90%. The main contributors were baseline-mean change in SpO, baseline SpO, respiratory events, and age.
The findings suggest that T90% may be an important marker of wellness in clinical and community-based scenarios. Although this nonspecific metric varies across the populations, ventilatory changes during sleep rather than other physiological or comorbidity variables explain their variability.
新型无线技术可以轻松在家中记录脉搏血氧饱和度。睡眠研究中记录的主要参数之一是 SpO 低于 90%的时间(T90%)和 3%的氧减饱和度指数(ODI-3%)。我们评估了 T90%和/或 ODI-3%在两种不同情况下(社区研究和临床环境)与全因死亡率(主要结局)的相关性。
我们纳入了睡眠心脏健康研究(SHHS,社区队列)和圣地亚哥阻塞性睡眠呼吸暂停(SantOSA,临床队列)中所有基线和随访时数据完整的个体。T90%和 ODI-3%是我们的主要暴露因素。通过调整后的 Cox 回归模型确定 T90%每标准差(pSD)与全因死亡率(主要结局)事件之间的调整后的危险比(HR)。在二次分析中,为了评估 T90%是否因临床因素、人体测量学、腹部肥胖、代谢率和 SpO 而有所不同,我们进行了线性回归模型。进行了增量 R 检验以检验假设。
共纳入了 4323 名(56%为男性,中位年龄 64 岁,随访 12 年,23%事件)和 1345 名(77%为男性,中位年龄 55 岁,随访 6 年,11.6%事件)SHHS 和 SantOSA 患者。SHHS 中 T90%每增加 1 SD 与调整后的 HR 为 1.18 [95%CI:1.10-1.26](p 值<0.001)相关,SantOSA 中全因死亡率的 HR 为 1.34 [95%CI:1.04-1.71](p 值=0.021)。相反,ODI-3%与不良结局无关。R 解释了 T90%变化的 62%。主要贡献者是基线平均 SpO 变化、基线 SpO、呼吸事件和年龄。
研究结果表明,T90%可能是临床和社区环境中健康的重要标志物。尽管这一非特异性指标在不同人群中有所不同,但睡眠期间的通气变化而不是其他生理或合并症变量解释了其变异性。