Suppr超能文献

使用实时智能手机监测进行一周自杀风险预测:前瞻性队列研究。

One-Week Suicide Risk Prediction Using Real-Time Smartphone Monitoring: Prospective Cohort Study.

机构信息

Department of Psychiatry, Jimenez Diaz Foundation University Hospital, Madrid, Spain.

Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain.

出版信息

J Med Internet Res. 2023 Sep 1;25:e43719. doi: 10.2196/43719.

Abstract

BACKGROUND

Suicide is a major global public health issue that is becoming increasingly common despite preventive efforts. Though current methods for predicting suicide risk are not sufficiently accurate, technological advances provide invaluable tools with which we may evolve toward a personalized, predictive approach.

OBJECTIVE

We aim to predict the short-term (1-week) risk of suicide by identifying changes in behavioral patterns characterized through real-time smartphone monitoring in a cohort of patients with suicidal ideation.

METHODS

We recruited 225 patients between February 2018 and March 2020 with a history of suicidal thoughts and behavior as part of the multicenter SmartCrisis study. Throughout 6 months of follow-up, we collected information on the risk of suicide or mental health crises. All participants underwent voluntary passive monitoring using data generated by their own smartphones, including distance walked and steps taken, time spent at home, and app usage. The algorithm constructs daily activity profiles for each patient according to these data and detects changes in the distribution of these profiles over time. Such changes are considered critical periods, and their relationship with suicide-risk events was tested.

RESULTS

During follow-up, 18 (8%) participants attempted suicide, and 14 (6.2%) presented to the emergency department for psychiatric care. The behavioral changes identified by the algorithm predicted suicide risk in a time frame of 1 week with an area under the curve of 0.78, indicating good accuracy.

CONCLUSIONS

We describe an innovative method to identify mental health crises based on passively collected information from patients' smartphones. This technology could be applied to homogeneous groups of patients to identify different types of crises.

摘要

背景

自杀是一个严重的全球公共卫生问题,尽管已经采取了预防措施,但自杀的发生率仍在不断上升。尽管目前预测自杀风险的方法不够准确,但技术进步为我们提供了宝贵的工具,使我们能够朝着个性化、预测性的方法发展。

目的

通过识别有自杀意念的患者在实时智能手机监测下表现出的行为模式变化,预测短期(1 周)自杀风险。

方法

我们招募了 225 名 2018 年 2 月至 2020 年 3 月期间有自杀念头和行为史的患者作为多中心 SmartCrisis 研究的一部分。在 6 个月的随访期间,我们收集了自杀或精神健康危机的风险信息。所有参与者都使用自己的智能手机生成的数据进行自愿的被动监测,包括行走距离和步数、在家时间和应用程序使用情况。该算法根据这些数据为每位患者构建日常活动概况,并检测这些概况随时间的分布变化。这些变化被认为是关键时期,并测试了它们与自杀风险事件的关系。

结果

在随访期间,18 名(8%)参与者尝试自杀,14 名(6.2%)因精神健康问题到急诊就诊。算法识别的行为变化在 1 周的时间内预测自杀风险的曲线下面积为 0.78,表明准确性较好。

结论

我们描述了一种基于从患者智能手机被动收集的信息来识别精神健康危机的创新方法。这项技术可以应用于同质的患者群体,以识别不同类型的危机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d407/10504627/2fefe1101325/jmir_v25i1e43719_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验