Suppr超能文献

急诊科出院后六个月内青少年自杀风险的实时真实世界数字监测:一项密集纵向研究方案

Real-Time Real-World Digital Monitoring of Adolescent Suicide Risk During the Six Months Following Emergency Department Discharge: Protocol for an Intensive Longitudinal Study.

作者信息

Barzilay Shira, Fine Shai, Akhavan Shannel, Haruvi-Catalan Liat, Apter Alan, Brunstein-Klomek Anat, Carmi Lior, Zohar Mishael, Kinarty Inbar, Friedman Talia, Fennig Silvana

机构信息

Department of Community Mental Health, University of Haifa, Haifa, Israel.

Schneider Children's Medical Center of Israel, Petach Tikva, Israel.

出版信息

JMIR Res Protoc. 2023 Jun 26;12:e46464. doi: 10.2196/46464.

Abstract

BACKGROUND

Suicide is the second leading cause of death in adolescents, and self-harm is one of the strongest predictors of death by suicide. The rates of adolescents presenting to emergency departments (EDs) for suicidal thoughts and behaviors (STBs) have increased. Still, existing follow-up after ED discharge is inadequate, leaving a high-risk period for reattempts and suicide. There is a need for innovative evaluation of imminent suicide risk factors in these patients, focusing on continuous real-time evaluations with low assessment burden and minimal reliance on patient disclosure of suicidal intent.

OBJECTIVE

This study examines prospective longitudinal associations between observed real-time mobile passive sensing, including communication and activity patterns, and clinical and self-reported assessments of STB over 6 months.

METHODS

This study will include 90 adolescents recruited on their first outpatient clinic visit following their discharge from the ED due to a recent STB. Participants will complete brief weekly assessments and be monitored continuously for their mobile app usage, including mobility, activity, and communication patterns, over 6 months using the iFeel research app. Participants will complete 4 in-person visits for clinical assessment at baseline and at the 1-, 3-, and 6-month follow-ups. The digital data will be processed, involving feature extraction, scaling, selection, and dimensionality reduction. Passive monitoring data will be analyzed using both classical machine learning models and deep learning models to identify proximal associations between real-time observed communication, activity patterns, and STB. The data will be split into a training and validation data set, and predictions will be matched against the clinical evaluations and self-reported STB events (ie, labels). To use both labeled and unlabeled digital data (ie, passively collected), we will use semisupervised methods in conjunction with a novel method that is based on anomaly detection notions.

RESULTS

Participant recruitment and follow-up started in February 2021 and are expected to be completed by 2024. We expect to find prospective proximal associations between mobile sensor communication, activity data, and STB outcomes. We will test predictive models for suicidal behaviors among high-risk adolescents.

CONCLUSIONS

Developing digital markers of STB in a real-world sample of high-risk adolescents presenting to ED can inform different interventions and provide an objective means to assess the risk of suicidal behaviors. The results of this study will be the first step toward large-scale validation that may lead to suicide risk measures that aid psychiatric follow-up, decision-making, and targeted treatments. This novel assessment could facilitate timely identification and intervention to save young people's lives.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/46464.

摘要

背景

自杀是青少年死亡的第二大主要原因,而自我伤害是自杀死亡最强的预测因素之一。因自杀想法和行为(STB)前往急诊科(ED)就诊的青少年比例有所增加。然而,急诊出院后的现有随访不足,导致再次尝试自杀和自杀的高危期出现。需要对这些患者即将发生的自杀风险因素进行创新性评估,重点是进行低评估负担且对患者自杀意图披露依赖最小的持续实时评估。

目的

本研究考察观察到的实时移动被动感知(包括通信和活动模式)与6个月内STB的临床及自我报告评估之间的前瞻性纵向关联。

方法

本研究将纳入90名青少年,他们因近期的STB从急诊科出院后首次到门诊就诊。参与者将每周完成简短评估,并使用iFeel研究应用程序在6个月内持续监测其移动应用使用情况,包括移动性、活动和通信模式。参与者将在基线以及1个月、3个月和6个月随访时进行4次面对面临床评估。数字数据将进行处理,包括特征提取、缩放、选择和降维。被动监测数据将使用经典机器学习模型和深度学习模型进行分析,以识别实时观察到的通信、活动模式与STB之间的近端关联。数据将被分为训练数据集和验证数据集,预测结果将与临床评估和自我报告的STB事件(即标签)进行匹配。为了使用标记和未标记的数字数据(即被动收集的数据),我们将使用半监督方法并结合一种基于异常检测概念的新方法。

结果

参与者招募和随访于2021年2月开始,预计2024年完成。我们预计会发现移动传感器通信、活动数据与STB结果之间的前瞻性近端关联。我们将测试高危青少年自杀行为的预测模型。

结论

在因STB前往急诊科就诊的高危青少年真实样本中开发STB的数字标记,可以为不同干预措施提供信息,并提供一种客观手段来评估自杀行为风险。本研究结果将是迈向大规模验证的第一步,这可能会带来有助于精神科随访、决策制定和靶向治疗的自杀风险测量方法。这种新颖的评估可以促进及时识别和干预,以挽救年轻人的生命。

国际注册报告识别码(IRRID):DERR1-10.2196/46464。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9654/10337376/fde692dad736/resprot_v12i1e46464_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验