Suppr超能文献

事件变换器:一种用于高效事件数据处理的多功能解决方案

Event Transformer . A Multi-Purpose Solution for Efficient Event Data Processing.

作者信息

Sabater Alberto, Montesano Luis, Murillo Ana C

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):16013-16020. doi: 10.1109/TPAMI.2023.3311336. Epub 2023 Nov 3.

Abstract

Event cameras record sparse illumination changes with high temporal resolution and high dynamic range. Thanks to their sparse recording and low consumption, they are increasingly used in applications such as AR/VR and autonomous driving. Current top-performing methods often ignore specific event-data properties, leading to the development of generic but computationally expensive algorithms, while event-aware methods do not perform as well. We propose Event Transformer , that improves our seminal work EvT with a refined patch-based event representation and a more robust backbone to achieve more accurate results, while still benefiting from event-data sparsity to increase its efficiency. Additionally, we show how our system can work with different data modalities and propose specific output heads, for event-stream classification (i.e. action recognition) and per-pixel predictions (dense depth estimation). Evaluation results show better performance to the state-of-the-art while requiring minimal computation resources, both on GPU and CPU.

摘要

事件相机以高时间分辨率和高动态范围记录稀疏的光照变化。由于其稀疏记录和低功耗,它们越来越多地应用于AR/VR和自动驾驶等应用中。当前性能最佳的方法通常忽略特定的事件数据属性,导致开发出通用但计算成本高昂的算法,而事件感知方法的性能也不尽如人意。我们提出了事件变换器,通过改进的基于补丁的事件表示和更强大的主干来改进我们的开创性工作EvT,以获得更准确的结果,同时仍受益于事件数据的稀疏性来提高其效率。此外,我们展示了我们的系统如何与不同的数据模态配合工作,并针对事件流分类(即动作识别)和逐像素预测(密集深度估计)提出了特定的输出头。评估结果表明,在GPU和CPU上,我们的方法在需要最少计算资源的情况下,性能优于现有技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验