Zhang Bo, Han Yuqi, Suo Jinli, Dai Qionghai
Department of Automation, Tsinghua University, Beijing, 100084, China.
Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China.
Sci Rep. 2024 Mar 21;14(1):6802. doi: 10.1038/s41598-024-57333-2.
Event cameras or dynamic vision sensors (DVS) record asynchronous response to brightness changes instead of conventional intensity frames, and feature ultra-high sensitivity at low bandwidth. The new mechanism demonstrates great advantages in challenging scenarios with fast motion and large dynamic range. However, the recorded events might be highly sparse due to either limited hardware bandwidth or extreme photon starvation in harsh environments. To unlock the full potential of event cameras, we propose an inventive event sequence completion approach conforming to the unique characteristics of event data in both the processing stage and the output form. Specifically, we treat event streams as 3D event clouds in the spatiotemporal domain, develop a diffusion-based generative model to generate dense clouds in a coarse-to-fine manner, and recover exact timestamps to maintain the temporal resolution of raw data successfully. To validate the effectiveness of our method comprehensively, we perform extensive experiments on three widely used public datasets with different spatial resolutions, and additionally collect a novel event dataset covering diverse scenarios with highly dynamic motions and under harsh illumination. Besides generating high-quality dense events, our method can benefit downstream applications such as object classification and intensity frame reconstruction.
事件相机或动态视觉传感器(DVS)记录对亮度变化的异步响应,而非传统的强度帧,并且在低带宽下具有超高灵敏度。这种新机制在存在快速运动和大动态范围的具有挑战性的场景中展现出巨大优势。然而,由于硬件带宽有限或在恶劣环境中极端的光子匮乏,所记录的事件可能非常稀疏。为了释放事件相机的全部潜力,我们提出一种创造性的事件序列完成方法,该方法在处理阶段和输出形式上均符合事件数据的独特特征。具体而言,我们将事件流视为时空域中的3D事件云,开发一种基于扩散的生成模型以从粗到细的方式生成密集云,并恢复精确的时间戳以成功保持原始数据的时间分辨率。为了全面验证我们方法的有效性,我们在三个具有不同空间分辨率的广泛使用的公共数据集上进行了大量实验,并且额外收集了一个新颖的事件数据集,该数据集涵盖具有高度动态运动和在恶劣光照条件下的各种场景。除了生成高质量的密集事件外,我们的方法还可以惠及诸如目标分类和强度帧重建等下游应用。