Suppr超能文献

使用深度卷积神经网络对超快筛查 MRI 中的增强对比病变进行定位。

Localization of contrast-enhanced breast lesions in ultrafast screening MRI using deep convolutional neural networks.

机构信息

Department of Radiation Oncology, and Data Science Center in Health (DASH), Machine Learning Lab, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.

Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.

出版信息

Eur Radiol. 2024 Mar;34(3):2084-2092. doi: 10.1007/s00330-023-10184-3. Epub 2023 Sep 2.

Abstract

OBJECTIVES

To develop a deep learning-based method for contrast-enhanced breast lesion detection in ultrafast screening MRI.

MATERIALS AND METHODS

A total of 837 breast MRI exams of 488 consecutive patients were included. Lesion's location was independently annotated in the maximum intensity projection (MIP) image of the last time-resolved angiography with stochastic trajectories (TWIST) sequence for each individual breast, resulting in 265 lesions (190 benign, 75 malignant) in 163 breasts (133 women). YOLOv5 models were fine-tuned using training sets containing the same number of MIP images with and without lesions. A long short-term memory (LSTM) network was employed to help reduce false positive predictions. The integrated system was then evaluated on test sets containing enriched uninvolved breasts during cross-validation to mimic the performance in a screening scenario.

RESULTS

In five-fold cross-validation, the YOLOv5x model showed a sensitivity of 0.95, 0.97, 0.98, and 0.99, with 0.125, 0.25, 0.5, and 1 false positive per breast, respectively. The LSTM network reduced 15.5% of the false positive prediction from the YOLO model, and the positive predictive value was increased from 0.22 to 0.25.

CONCLUSIONS

A fine-tuned YOLOv5x model can detect breast lesions on ultrafast MRI with high sensitivity in a screening population, and the output of the model could be further refined by an LSTM network to reduce the amount of false positive predictions.

CLINICAL RELEVANCE STATEMENT

The proposed integrated system would make the ultrafast MRI screening process more effective by assisting radiologists in prioritizing suspicious examinations and supporting the diagnostic workup.

KEY POINTS

• Deep convolutional neural networks could be utilized to automatically pinpoint breast lesions in screening MRI with high sensitivity. • False positive predictions significantly increased when the detection models were tested on highly unbalanced test sets with more normal scans. • Dynamic enhancement patterns of breast lesions during contrast inflow learned by the long short-term memory networks helped to reduce false positive predictions.

摘要

目的

开发一种基于深度学习的方法,用于在超快筛查 MRI 中检测对比增强的乳腺病变。

材料与方法

共纳入 837 例 488 例连续患者的乳腺 MRI 检查。在每个个体乳房的最后一个时间分辨血管造影随机轨迹(TWIST)序列的最大强度投影(MIP)图像中独立注释病变位置,导致 163 个乳房(133 名女性)中的 265 个病变(190 个良性,75 个恶性)。使用包含相同数量有病变和无病变 MIP 图像的训练集对 YOLOv5 模型进行微调。采用长短期记忆(LSTM)网络来帮助减少假阳性预测。然后,在交叉验证过程中,使用包含富含未受累乳房的测试集评估集成系统,以模拟在筛查场景中的性能。

结果

在五重交叉验证中,YOLOv5x 模型的灵敏度分别为 0.95、0.97、0.98 和 0.99,假阳性预测分别为每侧乳房 0.125、0.25、0.5 和 1。LSTM 网络减少了 YOLO 模型 15.5%的假阳性预测,阳性预测值从 0.22 增加到 0.25。

结论

经过微调的 YOLOv5x 模型可以在筛查人群中以高灵敏度检测乳腺病变,并且可以通过 LSTM 网络进一步细化模型的输出,以减少假阳性预测的数量。

临床相关性声明

该综合系统将通过帮助放射科医生优先考虑可疑检查并支持诊断工作流程,使超快 MRI 筛查过程更加有效。

要点

•深度学习卷积神经网络可用于以高灵敏度自动检测筛查 MRI 中的乳腺病变。•当在具有更多正常扫描的高度不平衡测试集中测试检测模型时,假阳性预测显著增加。•通过长短期记忆网络学习的乳腺病变在对比流入期间的动态增强模式有助于减少假阳性预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3953/10873226/9899ea0f8e5a/330_2023_10184_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验