Suppr超能文献

自动检测缩短动态对比增强磁共振成像(DCE-MRI)衍生乳腺最大强度投影(MIP)中的伪影。

Automated artifact detection in abbreviated dynamic contrast-enhanced (DCE) MRI-derived maximum intensity projections (MIPs) of the breast.

机构信息

Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 1, 91054, Erlangen, Germany.

Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany.

出版信息

Eur Radiol. 2022 Sep;32(9):5997-6007. doi: 10.1007/s00330-022-08626-5. Epub 2022 Apr 2.

Abstract

OBJECTIVES

To automatically detect MRI artifacts on dynamic contrast-enhanced (DCE) maximum intensity projections (MIPs) of the breast using deep learning.

METHODS

Women who underwent clinically indicated breast MRI between October 2015 and December 2019 were included in this IRB-approved retrospective study. We employed two convolutional neural network architectures (ResNet and DenseNet) to detect the presence of artifacts on DCE MIPs of the left and right breasts. Networks were trained on images acquired up to and including the year 2018 using a 5-fold cross-validation (CV). Ensemble classifiers were built with the resulting CV models and applied to an independent holdout test dataset, which was formed by images acquired in 2019.

RESULTS

Our study sample contained 2265 examinations from 1794 patients (median age at first acquisition: 50 years [IQR: 17 years]), corresponding to 1827 examinations of 1378 individuals in the training dataset and 438 examinations of 416 individuals in the holdout test dataset with a prevalence of image-level artifacts of 53% (1951/3654 images) and 43% (381/876 images), respectively. On the holdout test dataset, the ResNet and DenseNet ensembles demonstrated an area under the ROC curve of 0.92 and 0.94, respectively.

CONCLUSION

Neural networks are able to reliably detect artifacts that may impede the diagnostic assessment of MIPs derived from DCE subtraction series in breast MRI. Future studies need to further explore the potential of such neural networks to complement quality assurance and improve the application of DCE MIPs in a clinical setting, such as abbreviated protocols.

KEY POINTS

• Deep learning classifiers are able to reliably detect MRI artifacts in dynamic contrast-enhanced protocol-derived maximum intensity projections of the breast. • Automated quality assurance of maximum intensity projections of the breast may be of special relevance for abbreviated breast MRI, e.g., in high-throughput settings, such as cancer screening programs.

摘要

目的

使用深度学习自动检测动态对比增强(DCE)乳腺最大强度投影(MIP)上的 MRI 伪影。

方法

本 IRB 批准的回顾性研究纳入了 2015 年 10 月至 2019 年 12 月期间行临床指征性乳腺 MRI 的女性。我们使用了两种卷积神经网络架构(ResNet 和 DenseNet)来检测左右乳腺 DCE MIP 上伪影的存在。网络使用 5 折交叉验证(CV)对 2018 年及之前采集的图像进行训练。使用所得 CV 模型构建集成分类器,并将其应用于由 2019 年采集的图像组成的独立验证测试数据集。

结果

本研究样本包含了 2265 例 1794 名患者的检查结果(首次采集时的中位年龄:50 岁[IQR:17 岁]),分别对应于训练数据集的 1827 例 1378 名患者和验证测试数据集的 438 例 416 名患者的检查结果,图像水平伪影的患病率分别为 53%(1951/3654 例)和 43%(381/876 例)。在验证测试数据集上,ResNet 和 DenseNet 集成的 ROC 曲线下面积分别为 0.92 和 0.94。

结论

神经网络能够可靠地检测到可能会影响 DCE 减影序列衍生的 MIP 诊断评估的伪影。未来的研究需要进一步探索这些神经网络的潜力,以补充质量保证,并改善 DCE MIP 在临床环境中的应用,例如缩短协议。

关键点

  • 深度学习分类器能够可靠地检测乳腺动态对比增强协议衍生的最大强度投影中的 MRI 伪影。

  • 乳腺最大强度投影的自动质量保证可能对缩短的乳腺 MRI 特别重要,例如在高通量环境中,如癌症筛查计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/365e/9381479/21293ad94a29/330_2022_8626_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验