Suppr超能文献

利用时间和空间信息在超快磁共振成像中进行乳腺肿瘤识别

Breast Tumor Identification in Ultrafast MRI Using Temporal and Spatial Information.

作者信息

Jing Xueping, Dorrius Monique D, Wielema Mirjam, Sijens Paul E, Oudkerk Matthijs, van Ooijen Peter

机构信息

Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.

Department of Radiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.

出版信息

Cancers (Basel). 2022 Apr 18;14(8):2042. doi: 10.3390/cancers14082042.

Abstract

PURPOSE

To investigate the feasibility of using deep learning methods to differentiate benign from malignant breast lesions in ultrafast MRI with both temporal and spatial information.

METHODS

A total of 173 single breasts of 122 women (151 examinations) with lesions above 5 mm were retrospectively included. A total of 109 out of 173 lesions were benign. Maximum intensity projection (MIP) images were generated from each of the 14 contrast-enhanced T1-weighted acquisitions in the ultrafast MRI scan. A 2D convolutional neural network (CNN) and a long short-term memory (LSTM) network were employed to extract morphological and temporal features, respectively. The 2D CNN model was trained with the MIPs from the last four acquisitions to ensure the visibility of the lesions, while the LSTM model took MIPs of an entire scan as input. The performance of each model and their combination were evaluated with 100-times repeated stratified four-fold cross-validation. Those models were then compared with models developed with standard DCE-MRI which followed the same data split.

RESULTS

In the differentiation between benign and malignant lesions, the ultrafast MRI-based 2D CNN achieved a mean AUC of 0.81 ± 0.06, and the LSTM network achieved a mean AUC of 0.78 ± 0.07; their combination showed a mean AUC of 0.83 ± 0.06 in the cross-validation. The mean AUC values were significantly higher for ultrafast MRI-based models than standard DCE-MRI-based models.

CONCLUSION

Deep learning models developed with ultrafast breast MRI achieved higher performances than standard DCE-MRI for malignancy discrimination. The improved AUC values of the combined models indicate an added value of temporal information extracted by the LSTM model in breast lesion characterization.

摘要

目的

探讨利用深度学习方法在具有时间和空间信息的超快磁共振成像(MRI)中鉴别乳腺良恶性病变的可行性。

方法

回顾性纳入122名女性的173个单乳(151次检查),病变直径大于5mm。173个病变中共有109个为良性。从超快MRI扫描的14次对比增强T1加权采集图像中生成最大强度投影(MIP)图像。分别采用二维卷积神经网络(CNN)和长短期记忆(LSTM)网络提取形态学和时间特征。二维CNN模型用最后四次采集的MIP图像进行训练,以确保病变的可视性,而LSTM模型将整个扫描的MIP图像作为输入。每个模型及其组合的性能通过100次重复的分层四折交叉验证进行评估。然后将这些模型与采用相同数据划分的标准动态对比增强MRI(DCE-MRI)开发的模型进行比较。

结果

在鉴别良恶性病变时,基于超快MRI的二维CNN平均曲线下面积(AUC)为0.81±0.06,LSTM网络平均AUC为0.78±0.07;在交叉验证中,它们的组合平均AUC为0.83±0.06。基于超快MRI的模型的平均AUC值显著高于基于标准DCE-MRI的模型。

结论

用超快乳腺MRI开发的深度学习模型在鉴别恶性肿瘤方面比标准DCE-MRI具有更高的性能。组合模型AUC值的提高表明LSTM模型提取的时间信息在乳腺病变特征描述中具有附加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a350/9027362/1645d41217a8/cancers-14-02042-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验