Suppr超能文献

生物医学文献中实验模型的自动分类,以支持寻找替代动物实验的方法。

Automatic classification of experimental models in biomedical literature to support searching for alternative methods to animal experiments.

机构信息

German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany.

Current affiliation: Nuvisan ICB GmbH, Müllerstraße 178, 13353, Berlin, Germany.

出版信息

J Biomed Semantics. 2023 Sep 1;14(1):13. doi: 10.1186/s13326-023-00292-w.

Abstract

Current animal protection laws require replacement of animal experiments with alternative methods, whenever such methods are suitable to reach the intended scientific objective. However, searching for alternative methods in the scientific literature is a time-consuming task that requires careful screening of an enormously large number of experimental biomedical publications. The identification of potentially relevant methods, e.g. organ or cell culture models, or computer simulations, can be supported with text mining tools specifically built for this purpose. Such tools are trained (or fine tuned) on relevant data sets labeled by human experts. We developed the GoldHamster corpus, composed of 1,600 PubMed (Medline) articles (titles and abstracts), in which we manually identified the used experimental model according to a set of eight labels, namely: "in vivo", "organs", "primary cells", "immortal cell lines", "invertebrates", "humans", "in silico" and "other" (models). We recruited 13 annotators with expertise in the biomedical domain and assigned each article to two individuals. Four additional rounds of annotation aimed at improving the quality of the annotations with disagreements in the first round. Furthermore, we conducted various machine learning experiments based on supervised learning to evaluate the corpus for our classification task. We obtained more than 7,000 document-level annotations for the above labels. After the first round of annotation, the inter-annotator agreement (kappa coefficient) varied among labels, and ranged from 0.42 (for "others") to 0.82 (for "invertebrates"), with an overall score of 0.62. All disagreements were resolved in the subsequent rounds of annotation. The best-performing machine learning experiment used the PubMedBERT pre-trained model with fine-tuning to our corpus, which gained an overall f-score of 0.83. We obtained a corpus with high agreement for all labels, and our evaluation demonstrated that our corpus is suitable for training reliable predictive models for automatic classification of biomedical literature according to the used experimental models. Our SMAFIRA - "Smart feature-based interactive" - search tool ( https://smafira.bf3r.de ) will employ this classifier for supporting the retrieval of alternative methods to animal experiments. The corpus is available for download ( https://doi.org/10.5281/zenodo.7152295 ), as well as the source code ( https://github.com/mariananeves/goldhamster ) and the model ( https://huggingface.co/SMAFIRA/goldhamster ).

摘要

当前的动物保护法要求用替代方法取代动物实验,只要这些方法适合达到预期的科学目标。然而,在科学文献中寻找替代方法是一项耗时的任务,需要仔细筛选大量的实验生物医学出版物。可以使用专门为此目的构建的文本挖掘工具来支持潜在相关方法的识别,例如器官或细胞培养模型,或计算机模拟。这些工具是在由人类专家标记的相关数据集上进行训练(或微调)的。我们开发了 GoldHamster 语料库,由 1600 篇 PubMed(Medline)文章(标题和摘要)组成,我们根据一套八个标签手动识别使用的实验模型,即:“体内”、“器官”、“原代细胞”、“永生化细胞系”、“无脊椎动物”、“人类”、“计算机模拟”和“其他”(模型)。我们招募了 13 名具有生物医学领域专业知识的注释者,并将每篇文章分配给两个人。进行了四轮额外的注释,以提高第一轮注释的质量。此外,我们还进行了基于监督学习的各种机器学习实验,以评估我们的分类任务的语料库。我们为上述标签获得了超过 7000 个文档级别的注释。在第一轮注释之后,标签之间的注释者间一致性(kappa 系数)不同,范围从 0.42(对于“其他”)到 0.82(对于“无脊椎动物”),总分为 0.62。所有分歧都在随后的注释轮次中得到解决。表现最好的机器学习实验使用了经过微调的 PubMedBERT 预训练模型到我们的语料库,总体 f-score 为 0.83。我们获得了一个具有高度一致性的所有标签的语料库,并且我们的评估表明,我们的语料库适合训练可靠的预测模型,以根据使用的实验模型对生物医学文献进行自动分类。我们的 SMAFIRA - “智能基于特征的交互” - 搜索工具(https://smafira.bf3r.de)将使用此分类器来支持检索动物实验的替代方法。语料库可下载(https://doi.org/10.5281/zenodo.7152295),以及源代码(https://github.com/mariananeves/goldhamster)和模型(https://huggingface.co/SMAFIRA/goldhamster)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验