Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Sci Total Environ. 2023 Dec 15;904:166595. doi: 10.1016/j.scitotenv.2023.166595. Epub 2023 Sep 1.
Organic-rich thin stillage is a significant by-product of the liquor brewing industry, and its direct release into the environment can cause severe water pollution. Microbial fuel cells (MFCs) offer the possibility for converting organic matters in thin stillage into clean electricity. However, limited biofilm formation and conductivity are crucial bottlenecks in restricting the power harvest of MFCs. Here, to efficiently harvest electricity power from thin stillage of liquor industry, we adopted a modular engineering strategy to increase biofilm formation and conductivity of Shewanella oneidensis via enhancing the component biosynthesis of extracellular polymer substrates (EPS) matrix, regulating intracellular c-di-GMP level, and constructing of artificial hybrid system. The results showed that the constructed CNTs@CF-EnBF2 hybrid system with low charge-transfer resistance enabled a maximum output power density of 576.77 mW/m in lactate-fed MFCs. Also, to evaluate the capability of harvesting electricity from actual wastewater, the CNTs@CF-EnBF2 system was employed to treat actual thin stillage, obtaining a maximum output power density of 495.86 mW/m, 3.3-fold higher than the wild-type strain. Our research suggested that engineering and regulating EPS biosynthesis effectively promoted bioelectricity harvest, providing a green and sustainable treatment strategy for thin stillage.
富含有机物的稀酒糟是酿酒工业的重要副产物,直接排放到环境中会造成严重的水污染。微生物燃料电池(MFC)为将稀酒糟中的有机物转化为清洁电能提供了可能。然而,生物膜形成和导电性有限是限制 MFC 功率收获的关键瓶颈。在这里,为了从酿酒工业的稀酒糟中高效地获取电能,我们采用模块化工程策略,通过增强胞外聚合物基质(EPS)的成分生物合成、调节细胞内 c-di-GMP 水平以及构建人工杂交系统,来提高希瓦氏菌的生物膜形成和导电性。结果表明,构建的 CNTs@CF-EnBF2 杂化系统具有较低的电荷转移电阻,在乳酸盐-fed MFC 中可实现最大输出功率密度 576.77 mW/m。此外,为了评估从实际废水中获取电能的能力,该 CNTs@CF-EnBF2 系统被用于处理实际的稀酒糟,获得的最大输出功率密度为 495.86 mW/m,比野生型菌株高 3.3 倍。我们的研究表明,工程和调节 EPS 生物合成可有效促进生物电能的获取,为稀酒糟的处理提供了一种绿色可持续的策略。