Cayley Alex N, Foster Robert S, Brigo Alessandro, Muster Wolfgang, Musso Alyssa, Kenyon Michelle O, Parris Patricia, White Angela T, Cohen-Ohana Mirit, Nudelman Raphael, Glowienke Susanne
Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK.
Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK.
Regul Toxicol Pharmacol. 2023 Oct;144:105490. doi: 10.1016/j.yrtph.2023.105490. Epub 2023 Aug 31.
Expert review of two predictions, made by complementary (quantitative) structure-activity relationship models, to an overall conclusion is a key component of using in silico tools to assess the mutagenic potential of impurities as part of the ICH M7 guideline. In lieu of a specified protocol, numerous publications have presented best practise guides, often indicating the occurrence of common prediction scenarios and the evidence required to resolve them. A semi-automated expert review tool has been implemented in Lhasa Limited's Nexus platform following collation of these common arguments and assignment to the associated prediction scenarios made by Derek Nexus and Sarah Nexus. Using datasets primarily donated by pharmaceutical companies, an automated analysis of the frequency these prediction scenarios occur, and the likelihood of the associated arguments assigning the correct resolution, could then be conducted. This article highlights that a relatively small number of common arguments may be used to accurately resolve many prediction scenarios to a single conclusion. The use of a standardised method of argumentation and assessment of evidence for a given impurity is proposed to improve the efficiency and consistency of expert review as part of an ICH M7 submission.
由互补(定量)构效关系模型做出的两个预测的专家评审,以得出总体结论,是使用计算机工具评估杂质致突变潜力(作为ICH M7指南一部分)的关键组成部分。由于没有指定的方案,众多出版物都提出了最佳实践指南,常常指出常见预测情况的发生以及解决这些情况所需的证据。在整理了这些常见论据并将其分配给Derek Nexus和Sarah Nexus所做的相关预测情况后,拉萨有限公司的Nexus平台实施了一个半自动专家评审工具。利用主要由制药公司提供的数据集,随后可以对这些预测情况出现的频率以及相关论据得出正确结论的可能性进行自动分析。本文强调,相对少量的常见论据可用于准确地将许多预测情况归结为单一结论。建议采用标准化的论证方法和对给定杂质证据的评估,以提高作为ICH M7申报一部分的专家评审的效率和一致性。