文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发和验证一种新的列线图模型,以预测腰椎椎管狭窄症患者术后住院时间延长的风险。

Development and validation of a novel nomogram to predict the risk of the prolonged postoperative length of stay for lumbar spinal stenosis patients.

机构信息

Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.

Department of Spine center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.

出版信息

BMC Musculoskelet Disord. 2023 Sep 2;24(1):703. doi: 10.1186/s12891-023-06822-y.


DOI:10.1186/s12891-023-06822-y
PMID:37660009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10474765/
Abstract

BACKGROUND: Lumber spinal stenosis (LSS) is the increasingly reason for spine surgery for elder patients since China is facing the fastest-growing aging population. The aim of this research was to create a model to predict the probabilities of requiring a prolonged postoperative length of stay (PLOS) for lumbar spinal stenosis patients, minimizing the healthcare burden. METHODS: A total of 540 LSS patients were enrolled in this project. The outcome was a prolonged PLOS after spine surgery, defined as hospitalizations ≥ 75th percentile for PLOS, including the day of discharge. The least absolute shrinkage and selection operator (LASSO) was used to identify independent risk variables related to prolonged PLOS. Multivariable logistic regression analysis was utilized to generate a prediction model utilizing the variables employed in the LASSO approach. The receiver operating characteristic (ROC) curve's area under the curve (AUC) and the calibration curve's respective curves were used to further validate the model's calibration with predictability and discriminative capabilities. By using decision curve analysis, the resulting model's clinical effectiveness was assessed. RESULTS: Among 540 individuals, 344 had PLOS that was within the usual range of P75 (8 days), according to the interquartile range of PLOS, and 196 had PLOS that was above the normal range of P75 (prolonged PLOS). Four variables were incorporated into the predictive model, named: transfusion, operation duration, blood loss and involved spine segments. A great difference in clinical scores can be found between the two groups (P < 0.001). In the development set, the model's AUC for predicting prolonged PLOS was 0.812 (95% CI: 0.768-0.859), while in the validation set, it was 0.830 (95% CI: 0.753-0.881). The calibration plots for the probability showed coherence between the expected probability and the actual probability both in the development set and validation set respectively. When intervention was chosen at the potential threshold of 2%, analysis of the decision curve revealed that the model was more clinically effective. CONCLUSIONS: The individualized prediction nomogram incorporating five common clinical features for LSS patients undergoing surgery can be suitably used to smooth early identification and improve screening of patients at higher risk of prolonged PLOS and minimize health care.

摘要

背景:随着中国老龄化人口增长速度最快,腰椎管狭窄症(LSS)已成为老年患者脊柱手术的主要原因。本研究旨在建立一个预测腰椎管狭窄症患者术后延长住院时间(PLOS)概率的模型,以减轻医疗负担。

方法:本研究共纳入 540 例 LSS 患者。术后 PLOS 延长的结局定义为住院时间超过 PLOS 第 75 百分位数(包括出院当天)。采用最小绝对收缩和选择算子(LASSO)筛选与 PLOS 延长相关的独立风险变量。利用 LASSO 方法筛选出的变量进行多变量逻辑回归分析,建立预测模型。受试者工作特征(ROC)曲线下面积(AUC)和校准曲线分别评估模型的预测能力和校准度。通过决策曲线分析评估模型的临床有效性。

结果:540 例患者中,根据 PLOS 的四分位间距,344 例患者的 PLOS 在正常范围内(75 天),196 例患者的 PLOS 超过正常范围(PLOS 延长)。该预测模型纳入了输血、手术时间、出血量和受累脊柱节段 4 个变量。两组患者的临床评分有显著差异(P<0.001)。在开发集,该模型预测 PLOS 延长的 AUC 为 0.812(95%CI:0.768-0.859),在验证集,AUC 为 0.830(95%CI:0.753-0.881)。开发集和验证集的概率校准图均显示,预测概率与实际概率之间存在一致性。当干预概率设定在潜在阈值的 2%时,决策曲线分析表明,该模型具有更高的临床有效性。

结论:本研究建立的预测列线图纳入了 5 个常见的 LSS 患者临床特征,可为术后 PLOS 延长风险较高的患者提供个体化预测,并有助于早期识别和筛选,从而减轻医疗负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/02a9a542c799/12891_2023_6822_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/eaf4d3a4f1de/12891_2023_6822_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/90bf6aa245f7/12891_2023_6822_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/ab08009209f1/12891_2023_6822_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/03171c465124/12891_2023_6822_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/adf72c96ef9d/12891_2023_6822_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/d02ddecfc274/12891_2023_6822_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/02a9a542c799/12891_2023_6822_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/eaf4d3a4f1de/12891_2023_6822_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/90bf6aa245f7/12891_2023_6822_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/ab08009209f1/12891_2023_6822_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/03171c465124/12891_2023_6822_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/adf72c96ef9d/12891_2023_6822_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/d02ddecfc274/12891_2023_6822_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237b/10474765/02a9a542c799/12891_2023_6822_Fig7_HTML.jpg

相似文献

[1]
Development and validation of a novel nomogram to predict the risk of the prolonged postoperative length of stay for lumbar spinal stenosis patients.

BMC Musculoskelet Disord. 2023-9-2

[2]
Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram.

Front Surg. 2022-8-16

[3]
Development and validation of a novel risk classification tool for predicting long length of stay in NICU blood transfusion infants.

Sci Rep. 2024-3-22

[4]
A novel nomogram for predicting the prolonged length of stay in post-anesthesia care unit after elective operation.

BMC Anesthesiol. 2023-12-7

[5]
Predictive model for prolonged hospital stay risk after gastric cancer surgery.

Front Oncol. 2024-8-6

[6]
Machine learning-enabled prediction of prolonged length of stay in hospital after surgery for tuberculosis spondylitis patients with unbalanced data: a novel approach using explainable artificial intelligence (XAI).

Eur J Med Res. 2024-7-25

[7]
Development and external validation of a predictive model for prolonged length of hospital stay in elderly patients undergoing lumbar fusion surgery: comparison of three predictive models.

Eur Spine J. 2024-3

[8]
Development and Validation of a Risk-Prediction Nomogram for Preoperative Blood Type and Antibody Testing in Spinal Fusion Surgery.

Orthop Surg. 2024-1

[9]
Prediction of additional hospital days in patients undergoing cervical spine surgery with machine learning methods.

Comput Assist Surg (Abingdon). 2024-12

[10]
Development and validation of a nomogram for predicting in-hospital mortality of patients with cervical spine fractures without spinal cord injury.

Eur J Med Res. 2024-1-29

引用本文的文献

[1]
Predictive model for prolonged hospital stay risk after gastric cancer surgery.

Front Oncol. 2024-8-6

本文引用的文献

[1]
Epidemiology of total hip arthroplasty: demographics, comorbidities and outcomes.

Arthroplasty. 2023-1-3

[2]
Predicting prolonged postoperative length of stay risk in patients undergoing lumbar fusion surgery: Development and assessment of a novel predictive nomogram.

Front Surg. 2022-8-16

[3]
Enhanced recovery after surgery (ERAS) improves return of physiological function in frail patients undergoing one- to two-level TLIFs: an observational retrospective cohort study.

Spine J. 2022-9

[4]
Allogeneic blood transfusions and infection risk in lumbar spine surgery: An American College of Surgeons National Surgery Quality Improvement Program Study.

Transfusion. 2022-5

[5]
Powerful Identification of Large Quantitative Trait Loci Using Genome-Wide R/glmnet-Based Regression.

J Hered. 2022-7-23

[6]
A nomogram to predict the risk of prolonged length of stay following primary total hip arthroplasty with an enhanced recovery after surgery program.

J Orthop Surg Res. 2021-12-14

[7]
Enhanced recovery after surgery (ERAS) for open transforaminal lumbar interbody fusion: a retrospective propensity-matched cohort study.

Spine J. 2022-3

[8]
Effect of intraoperative blood loss on postoperative pulmonary complications in patients undergoing video-assisted thoracoscopic surgery.

Turk Gogus Kalp Damar Cerrahisi Derg. 2021-7-26

[9]
Hidden blood loss in adolescent idiopathic scoliosis patients undergoing posterior spinal fusion surgery: a retrospective study of 765 cases at a single centre.

BMC Musculoskelet Disord. 2021-9-15

[10]
Feasibility of implementing , a clinical decision support tool to improve extubation decision-making in the ICU: a mixed-methods observational study.

BMJ Open. 2021-8-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索