Suppr超能文献

高维离散结局个体化治疗规则中的变量选择:减轻抑郁症状严重程度。

Variable selection in high dimensions for discrete-outcome individualized treatment rules: Reducing severity of depression symptoms.

机构信息

McGill University, Department of Epidemiology & Biostatistics, 2001 McGill College Ave, Suite 1200, Montreal, QC Canada H3A 1G1.

Université de Montréal, Department of Mathematics & Statistics, Pavillon André-Aisenstadt, Montréal, QC Canada H3C 3J7.

出版信息

Biostatistics. 2024 Jul 1;25(3):633-647. doi: 10.1093/biostatistics/kxad022.

Abstract

Despite growing interest in estimating individualized treatment rules, little attention has been given the binary outcome setting. Estimation is challenging with nonlinear link functions, especially when variable selection is needed. We use a new computational approach to solve a recently proposed doubly robust regularized estimating equation to accomplish this difficult task in a case study of depression treatment. We demonstrate an application of this new approach in combination with a weighted and penalized estimating equation to this challenging binary outcome setting. We demonstrate the double robustness of the method and its effectiveness for variable selection. The work is motivated by and applied to an analysis of treatment for unipolar depression using a population of patients treated at Kaiser Permanente Washington.

摘要

尽管人们对估计个体化治疗规则越来越感兴趣,但很少关注二进制结果设置。当需要变量选择时,非线性链接函数的估计具有挑战性。我们使用一种新的计算方法来解决最近提出的双稳健正则化估计方程,以在抑郁症治疗的案例研究中完成这一困难任务。我们展示了这种新方法与加权和惩罚估计方程在这个具有挑战性的二进制结果设置中的应用。我们证明了该方法的双重稳健性及其对变量选择的有效性。这项工作的动机是并应用于使用 Kaiser Permanente Washington 治疗的患者群体对单相抑郁症治疗的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验