Bian Zeyu, Moodie Erica E M, Shortreed Susan M, Lambert Sylvie D, Bhatnagar Sahir
Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec H3A 0G4, Canada.
Miami Herbert Business School, University of Miami, Miami, FL 33146, USA.
J R Stat Soc Ser C Appl Stat. 2023 Nov 2;73(2):298-313. doi: 10.1093/jrsssc/qlad096. eCollection 2024 Mar.
An individualised treatment rule (ITR) is a decision rule that aims to improve individuals' health outcomes by recommending treatments according to subject-specific information. In observational studies, collected data may contain many variables that are irrelevant to treatment decisions. Including all variables in an ITR could yield low efficiency and a complicated treatment rule that is difficult to implement. Thus, selecting variables to improve the treatment rule is crucial. We propose a doubly robust variable selection method for ITRs, and show that it compares favourably with competing approaches. We illustrate the proposed method on data from an adaptive, web-based stress management tool.
个性化治疗规则(ITR)是一种决策规则,旨在通过根据个体特定信息推荐治疗方案来改善个体的健康结果。在观察性研究中,收集到的数据可能包含许多与治疗决策无关的变量。在ITR中纳入所有变量可能会导致效率低下以及产生难以实施的复杂治疗规则。因此,选择变量以改进治疗规则至关重要。我们提出了一种用于ITR的双稳健变量选择方法,并表明它与其他竞争方法相比具有优势。我们在来自一个基于网络的自适应压力管理工具的数据上说明了所提出的方法。