一种用于阿尔茨海默病诊断的跨模态互知识蒸馏框架:解决模态不完整问题。

A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.

作者信息

Kwak Min Gu, Mao Lingchao, Zheng Zhiyang, Su Yi, Lure Fleming, Li Jing

机构信息

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Banner Alzheimer's Institute, Phoenix, AZ 85006, USA.

出版信息

IEEE Trans Autom Sci Eng. 2025;22:14218-14233. doi: 10.1109/tase.2025.3556290. Epub 2025 Mar 31.

Abstract

Early detection of Alzheimer's Disease (AD) is crucial for timely interventions and optimizing treatment outcomes. Integrating multimodal neuroimaging datasets can enhance the early detection of AD. However, models must address the challenge of incomplete modalities, a common issue in real-world scenarios, as not all patients have access to all modalities due to practical constraints such as cost and availability. We propose a deep learning framework employing Incomplete Cross-modal Mutual Knowledge Distillation (IC-MKD) to model different sub-cohorts of patients based on their available modalities. In IC-MKD, the multimodal model (e.g., MRI and PET) serves as a teacher, while the single-modality model (e.g., MRI only) is the student. Our IC-MKD framework features three components: a Modality-Disentangling Teacher (MDT) model designed through information disentanglement, a student model that learns from classification errors and MDT's knowledge, and the teacher model enhanced via distilling the student's single-modal feature extraction capabilities. Moreover, we show the effectiveness of the proposed method through theoretical analysis and validate its performance with simulation studies. In addition, our method is demonstrated through a case study with Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets, underscoring the potential of artificial intelligence in addressing incomplete multimodal neuroimaging datasets and advancing early AD detection.

摘要

阿尔茨海默病(AD)的早期检测对于及时干预和优化治疗效果至关重要。整合多模态神经影像数据集可以提高AD的早期检测率。然而,模型必须应对模态不完整这一挑战,这在现实场景中是一个常见问题,因为由于成本和可用性等实际限制,并非所有患者都能获得所有模态的数据。我们提出了一种深度学习框架,采用不完全跨模态互知识蒸馏(IC-MKD),根据患者可用的模态对不同亚组的患者进行建模。在IC-MKD中,多模态模型(如MRI和PET)充当教师,而单模态模型(如仅MRI)是学生。我们的IC-MKD框架具有三个组件:通过信息解缠设计的模态解缠教师(MDT)模型、从分类错误和MDT的知识中学习的学生模型,以及通过提炼学生的单模态特征提取能力而增强的教师模型。此外,我们通过理论分析展示了所提方法的有效性,并通过模拟研究验证了其性能。此外,我们通过对阿尔茨海默病神经影像倡议(ADNI)数据集的案例研究展示了我们的方法,强调了人工智能在处理不完整的多模态神经影像数据集和推进AD早期检测方面所具有的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索