Suppr超能文献

结合放射学和基因组结核病门户数据进行耐药性分析。

Combining Radiological and Genomic TB Portals Data for Drug Resistance Analysis.

作者信息

Bui Vy C B, Yaniv Ziv, Harris Michael, Yang Feng, Kantipudi Karthik, Hurt Darrell, Rosenthal Alex, Jaeger Stefan

机构信息

Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

IEEE Access. 2023;11:84228-84240. doi: 10.1109/access.2023.3298750. Epub 2023 Jul 25.

Abstract

Tuberculosis (TB) drug resistance is a worldwide public health problem. It decreases the likelihood of a positive outcome for the individual patient and increases the likelihood of disease spread. Therefore, early detection of TB drug resistance is crucial for improving outcomes and controlling disease transmission. While drug-sensitive tuberculosis cases are declining worldwide because of effective treatment, the threat of drug-resistant tuberculosis is growing, and the success rate of drug-resistant tuberculosis treatment is only around 60%. The TB Portals program provides a publicly accessible repository of TB case data with an emphasis on collecting drug-resistant cases. The dataset includes multi-modal information such as socioeconomic/geographic data, clinical characteristics, pathogen genomics, and radiological features. The program is an international collaboration whose participants are typically under a substantial burden of drug-resistant tuberculosis, with data collected from standard clinical care provided to the patients. Consequentially, the TB Portals dataset is heterogenous in nature, with data representing multiple treatment centers in different countries and containing cross-domain information. This study presents the challenges and methods used to address them when working with this real-world dataset. Our goal was to evaluate whether combining radiological features derived from a chest X-ray of the host and genomic features from the pathogen can potentially improve the identification of the drug susceptibility type, drug-sensitive (DS-TB) or drug-resistant (DR-TB), and the length of the first successful drug regimen. To perform these studies, significantly imbalanced data needed to be processed, which included a much larger number of DR-TB cases than DS-TB, many more cases with radiological findings than genomic ones, and the sparse high dimensional nature of the genomic information. Three evaluation studies were carried out. First, the DR-TB/DS-TB classification model achieved an average accuracy of 92.4% when using genomic features alone or when combining radiological and genomic features. Second, the regression model for the length of the first successful treatment had a relative error of 53.5% using radiological features, 25.6% using genomic features, and 22.0% using both radiological and genomic features. Finally, the relative error of the third regression model predicting the length of the first treatment using the most common drug combination varied depending on the feature type used. When using radiological features alone, the relative error was 17.8%. For genomic features alone, the relative error increased to 19.9%. The model had a relative error of 19.0% when both radiological and genomic features were combined. Although combining radiological and genomic features did not improve upon the use of genomic features when classifying DR-TB/DS-TB, the combination of the two feature types improved the relative error of the predictive model for the length of the first successful treatment. Furthermore, the regression model trained on radiological features achieved the best performance when predicting the treatment length of the most common drug combination.

摘要

结核病(TB)耐药性是一个全球性的公共卫生问题。它降低了个体患者获得良好治疗结果的可能性,并增加了疾病传播的可能性。因此,早期检测结核病耐药性对于改善治疗结果和控制疾病传播至关重要。尽管由于有效治疗,全球范围内药物敏感型结核病病例正在减少,但耐多药结核病的威胁却在增加,耐多药结核病的治疗成功率仅约为60%。结核病门户计划提供了一个可公开访问的结核病病例数据库,重点是收集耐药病例。该数据集包括多模态信息,如社会经济/地理数据、临床特征、病原体基因组学和放射学特征。该计划是一项国际合作项目,其参与者通常承受着巨大的耐多药结核病负担,所收集的数据来自为患者提供的标准临床护理。因此,结核病门户数据集本质上是异质的,数据代表了不同国家的多个治疗中心,并包含跨领域信息。本研究介绍了处理这个真实世界数据集时遇到的挑战以及用于应对这些挑战的方法。我们的目标是评估结合宿主胸部X光的放射学特征和病原体的基因组特征是否有可能改善对药物敏感性类型(药物敏感型结核病或耐药型结核病)的识别以及首个成功治疗方案的疗程。为了进行这些研究,需要处理严重不平衡的数据,其中耐药型结核病病例比药物敏感型结核病病例多得多,有放射学检查结果的病例比有基因组检查结果的病例多得多,而且基因组信息具有稀疏高维的特点。进行了三项评估研究。首先,耐药型结核病/药物敏感型结核病分类模型在单独使用基因组特征或结合放射学和基因组特征时,平均准确率达到了92.4%。其次,首个成功治疗疗程长度的回归模型,使用放射学特征时相对误差为53.5%,使用基因组特征时为25.6%,同时使用放射学和基因组特征时为22.0%。最后,预测使用最常见药物组合的首个治疗疗程长度的第三个回归模型的相对误差因所使用的特征类型而异。单独使用放射学特征时,相对误差为17.8%。仅使用基因组特征时,相对误差增至19.9%。当放射学和基因组特征结合使用时,该模型的相对误差为19.0%。虽然在对耐药型结核病/药物敏感型结核病进行分类时,结合放射学和基因组特征并没有比单独使用基因组特征有更好的效果,但这两种特征类型的组合改善了首个成功治疗疗程长度预测模型的相对误差。此外,基于放射学特征训练的回归模型在预测最常见药物组合的治疗疗程时表现最佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验