Suppr超能文献

用于肾功能不全的晚期心力衰竭患者的人工智能混合生存评估

AI hybrid survival assessment for advanced heart failure patients with renal dysfunction.

作者信息

Zhang Ge, Wang Zeyu, Tong Zhuang, Qin Zhen, Su Chang, Li Demin, Xu Shuai, Li Kaixiang, Zhou Zhaokai, Xu Yudi, Zhang Shiqian, Wu Ruhao, Li Teng, Zheng Youyang, Zhang Jinying, Cheng Ke, Tang Junnan

机构信息

Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.

Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, 450052, China.

出版信息

Nat Commun. 2024 Aug 8;15(1):6756. doi: 10.1038/s41467-024-50415-9.

Abstract

Renal dysfunction (RD) often characterizes the worse course of patients with advanced heart failure (AHF). Many prognosis assessments are hindered by researcher biases, redundant predictors, and lack of clinical applicability. In this study, we enroll 1736 AHF/RD patients, including data from Henan Province Clinical Research Center for Cardiovascular Diseases (which encompasses 11 hospital subcenters), and Beth Israel Deaconess Medical Center. We developed an AI hybrid modeling framework, assembling 12 learners with different feature selection paradigms to expand modeling schemes. The optimized strategy is identified from 132 potential schemes to establish an explainable survival assessment system: AIHFLevel. The conditional inference survival tree determines a probability threshold for prognostic stratification. The evaluation confirmed the system's robustness in discrimination, calibration, generalization, and clinical implications. AIHFLevel outperforms existing models, clinical features, and biomarkers. We also launch an open and user-friendly website www.hf-ai-survival.com , empowering healthcare professionals with enhanced tools for continuous risk monitoring and precise risk profiling.

摘要

肾功能不全(RD)常是晚期心力衰竭(AHF)患者病情恶化的特征。许多预后评估受到研究者偏差、冗余预测指标以及缺乏临床适用性的阻碍。在本研究中,我们纳入了1736例AHF/RD患者,数据来自河南省心血管病临床研究中心(包括11个医院分中心)以及贝斯以色列女执事医疗中心。我们开发了一个人工智能混合建模框架,集合了12个具有不同特征选择范式的学习器以扩展建模方案。从132种潜在方案中确定优化策略,以建立一个可解释的生存评估系统:AIHFLevel。条件推断生存树确定预后分层的概率阈值。评估证实了该系统在区分、校准、泛化和临床意义方面的稳健性。AIHFLevel优于现有模型、临床特征和生物标志物。我们还推出了一个开放且用户友好的网站www.hf-ai-survival.com,为医疗保健专业人员提供增强工具,以进行持续风险监测和精确风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f8/11310499/c8c2036bdf5d/41467_2024_50415_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验