Suppr超能文献

EpiGe:一种使用基于聚合酶链反应的甲基基因分型对髓母细胞瘤进行快速分类的机器学习策略。

EpiGe: A machine-learning strategy for rapid classification of medulloblastoma using PCR-based methyl-genotyping.

作者信息

Gómez-González Soledad, Llano Joshua, Garcia Marta, Garrido-Garcia Alicia, Suñol Mariona, Lemos Isadora, Perez-Jaume Sara, Salvador Noelia, Gene-Olaciregui Nagore, Galán Raquel Arnau, Santa-María Vicente, Perez-Somarriba Marta, Castañeda Alicia, Hinojosa José, Winter Ursula, Moreira Francisco Barbosa, Lubieniecki Fabiana, Vazquez Valeria, Mora Jaume, Cruz Ofelia, La Madrid Andrés Morales, Perera Alexandre, Lavarino Cinzia

机构信息

Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain.

Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.

出版信息

iScience. 2023 Aug 12;26(9):107598. doi: 10.1016/j.isci.2023.107598. eCollection 2023 Sep 15.

Abstract

Molecular classification of medulloblastoma is critical for the treatment of this brain tumor. Array-based DNA methylation profiling has emerged as a powerful approach for brain tumor classification. However, this technology is currently not widely available. We present a machine-learning decision support system (DSS) that enables the classification of the principal molecular groups-WNT, SHH, and non-WNT/non-SHH-directly from quantitative PCR (qPCR) data. We propose a framework where the developed DSS appears as a user-friendly web-application-EpiGe-App-that enables automated interpretation of qPCR methylation data and subsequent molecular group prediction. The basis of our classification strategy is a previously validated six-cytosine signature with subgroup-specific methylation profiles. This reduced set of markers enabled us to develop a methyl-genotyping assay capable of determining the methylation status of cytosines using qPCR instruments. This study provides a comprehensive approach for rapid classification of clinically relevant medulloblastoma groups, using readily accessible equipment and an easy-to-use web-application.t.

摘要

髓母细胞瘤的分子分类对于这种脑肿瘤的治疗至关重要。基于阵列的DNA甲基化谱分析已成为脑肿瘤分类的一种强大方法。然而,这项技术目前尚未广泛应用。我们提出了一种机器学习决策支持系统(DSS),它能够直接从定量PCR(qPCR)数据中对主要分子组——WNT、SHH和非WNT/非SHH进行分类。我们提出了一个框架,在这个框架中,所开发的DSS呈现为一个用户友好的网络应用程序——EpiGe-App,它能够对qPCR甲基化数据进行自动解读并随后进行分子组预测。我们分类策略的基础是一个先前经过验证的具有亚组特异性甲基化谱的六胞嘧啶特征。这一精简的标记集使我们能够开发一种甲基基因分型检测方法,该方法能够使用qPCR仪器确定胞嘧啶的甲基化状态。本研究提供了一种全面的方法,可利用易于获取的设备和易于使用的网络应用程序对临床相关的髓母细胞瘤组进行快速分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f700/10470382/d8dd5d348642/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验