Suppr超能文献

MBMethPred:一种使用数据整合和基于人工智能的方法对儿童髓母细胞瘤亚组进行准确分类的计算框架。

MBMethPred: a computational framework for the accurate classification of childhood medulloblastoma subgroups using data integration and AI-based approaches.

作者信息

Sharif Rahmani Edris, Lawarde Ankita, Lingasamy Prakash, Moreno Sergio Vela, Salumets Andres, Modhukur Vijayachitra

机构信息

Competence Centre on Health Technologies, Tartu, Estonia.

Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.

出版信息

Front Genet. 2023 Sep 7;14:1233657. doi: 10.3389/fgene.2023.1233657. eCollection 2023.

Abstract

Childhood medulloblastoma is a malignant form of brain tumor that is widely classified into four subgroups based on molecular and genetic characteristics. Accurate classification of these subgroups is crucial for appropriate treatment, monitoring plans, and targeted therapies. However, misclassification between groups 3 and 4 is common. To address this issue, an AI-based R package called MBMethPred was developed based on DNA methylation and gene expression profiles of 763 medulloblastoma samples to classify subgroups using machine learning and neural network models. The developed prediction models achieved a classification accuracy of over 96% for subgroup classification by using 399 CpGs as prediction biomarkers. We also assessed the prognostic relevance of prediction biomarkers using survival analysis. Furthermore, we identified subgroup-specific drivers of medulloblastoma using functional enrichment analysis, Shapley values, and gene network analysis. In particular, the genes involved in the nervous system development process have the potential to separate medulloblastoma subgroups with 99% accuracy. Notably, our analysis identified 16 genes that were specifically significant for subgroup classification, including , , and . Our findings contribute to enhanced survival outcomes for patients with medulloblastoma. Continued research and validation efforts are needed to further refine and expand the utility of our approach in other cancer types, advancing personalized medicine in pediatric oncology.

摘要

儿童髓母细胞瘤是一种恶性脑肿瘤,根据分子和遗传特征广泛分为四个亚组。准确分类这些亚组对于适当的治疗、监测计划和靶向治疗至关重要。然而,3组和4组之间的错误分类很常见。为了解决这个问题,基于763个髓母细胞瘤样本的DNA甲基化和基因表达谱,开发了一个名为MBMethPred的基于人工智能的R包,以使用机器学习和神经网络模型对亚组进行分类。通过使用399个CpG作为预测生物标志物,开发的预测模型在亚组分类中实现了超过96%的分类准确率。我们还使用生存分析评估了预测生物标志物的预后相关性。此外,我们使用功能富集分析、Shapley值和基因网络分析确定了髓母细胞瘤亚组特异性驱动因素。特别是,参与神经系统发育过程的基因有潜力以99%的准确率区分髓母细胞瘤亚组。值得注意的是,我们的分析确定了16个对亚组分类特别重要的基因,包括 、 、 和 。我们的研究结果有助于提高髓母细胞瘤患者的生存结果。需要持续的研究和验证工作,以进一步完善和扩大我们的方法在其他癌症类型中的应用,推动儿科肿瘤学的个性化医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58fc/10513500/6c89936f2f08/fgene-14-1233657-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验