Suppr超能文献

非电离辐射建模以预测室内大麻农场工作区域的环境辐照度。

Non-ionizing radiation modeling to predict ambient irradiance in work areas at an indoor cannabis farm.

机构信息

Department of Environmental and Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, United States.

Department of Architecture, University of Washington, 208 Gould Hall, 3950 University Way NE, Seattle, WA 98105, United States.

出版信息

Ann Work Expo Health. 2023 Nov 28;67(9):1088-1098. doi: 10.1093/annweh/wxad048.

Abstract

Agricultural workers frequently experience potentially hazardous exposure to non-ionizing radiation from both solar and artificial sources, and measurement of this exposure can be expensive and impractical for large populations. This project develops and evaluates a vegetative radiative transfer model (VRTM) to predict irradiance in a grow room of an indoor cannabis farm. The model uses morphological characteristics of the crop, manufacturer provided lamp emissions data, and dimensional measurements of the grow room and cannabis hedgerows to predict irradiance. A linear regression comparing model predictions with the measurements taken by a visible light spectroradiometer had slopes within 23% of unity and R2 values above 0.88 for visible (400-700 nm), blue (400-500 nm), green (500-600 nm), and red (600-700 nm) wavelength bands. The excellent agreement between the model and the measured irradiance in the cannabis farm grow room supports the potential of using VRTMs to predict irradiance and worker exposure in agricultural settings. Because there is no mechanistic difference between visible and other non-ionizing wavelengths of radiation in regards to mechanisms of radiative transfer, the model developed herein for visible wavelengths of radiation should be generalizable to other radiation bands including infrared and ultraviolet radiation.

摘要

农业工人经常面临来自太阳和人工源的非电离辐射的潜在危险暴露,而对于大量人群来说,这种暴露的测量既昂贵又不切实际。本项目开发并评估了一种植物辐射传输模型 (VRTM),以预测室内大麻种植室内生长室的辐照度。该模型使用作物的形态特征、制造商提供的灯发射数据以及生长室和大麻树篱的尺寸测量值来预测辐照度。用可见光分光辐射计测量的辐照度与模型预测值进行线性回归,结果表明,在可见(400-700nm)、蓝色(400-500nm)、绿色(500-600nm)和红色(600-700nm)波长带中,斜率在 23%以内,R2 值大于 0.88。该模型与大麻农场生长室中的实测辐照度之间的良好一致性支持了使用 VRTM 预测农业环境中辐照度和工人暴露的潜力。由于在辐射传输机制方面,可见光和其他非电离波长的辐射之间没有机制差异,因此本文为可见光波段辐射开发的模型应该可以推广到包括红外和紫外辐射在内的其他辐射波段。

相似文献

1
Non-ionizing radiation modeling to predict ambient irradiance in work areas at an indoor cannabis farm.
Ann Work Expo Health. 2023 Nov 28;67(9):1088-1098. doi: 10.1093/annweh/wxad048.
2
Ultraviolet radiation exposure in cannabis-growing facilities.
J Occup Environ Hyg. 2023 Jul;20(7):268-278. doi: 10.1080/15459624.2023.2207616. Epub 2023 Jul 6.
3
Ocular exposure to solar ultraviolet and visible radiation at high latitudes.
Scand J Work Environ Health. 1991 Dec;17(6):398-403. doi: 10.5271/sjweh.1687.
4
Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.
Astrobiology. 2015 Mar;15(3):207-20. doi: 10.1089/ast.2014.1224. Epub 2015 Feb 18.
5
Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.
J Photochem Photobiol B. 2016 Aug;161:450-5. doi: 10.1016/j.jphotobiol.2016.06.014. Epub 2016 Jun 10.
6
Factors affecting wavelength-resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry.
Indoor Air. 2021 Jul;31(4):1187-1198. doi: 10.1111/ina.12784. Epub 2020 Dec 29.
7
Wearable Spectroradiometer for Dosimetry.
Sensors (Basel). 2022 Nov 15;22(22):8829. doi: 10.3390/s22228829.
8
Standard ultraviolet daylight for nonextreme exposure conditions.
Photochem Photobiol. 2005 Jul-Aug;81(4):874-8. doi: 10.1562/2004-05-14-RA-167.
10
Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.
Photochem Photobiol. 2018 Jul;94(4):807-814. doi: 10.1111/php.12920. Epub 2018 Apr 24.

本文引用的文献

1
Wearable Spectroradiometer for Dosimetry.
Sensors (Basel). 2022 Nov 15;22(22):8829. doi: 10.3390/s22228829.
2
Cancer incidence in agricultural workers: Findings from an international consortium of agricultural cohort studies (AGRICOH).
Environ Int. 2021 Dec;157:106825. doi: 10.1016/j.envint.2021.106825. Epub 2021 Aug 27.
3
Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies.
NPJ Aging Mech Dis. 2017 Jun 16;3:9. doi: 10.1038/s41514-017-0010-2. eCollection 2017.
5
UV-induced skin damage.
Toxicology. 2003 Jul 15;189(1-2):21-39. doi: 10.1016/s0300-483x(03)00150-1.
6
Cancer among farmers: a meta-analysis.
Ann Epidemiol. 1998 Jan;8(1):64-74. doi: 10.1016/s1047-2797(97)00120-8.
7
The effects of ultraviolet on the eye.
Am Ind Hyg Assoc J. 1971 Apr;32(4):235-46. doi: 10.1080/0002889718506444.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验