Yang Man, Jung Tzyy-Ping, Han Jin, Xu Minpeng, Ming Dong
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China.
School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P. R. China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Apr 25;39(2):416-425. doi: 10.7507/1001-5515.202111066.
Brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) have become one of the major paradigms in BCI research due to their high signal-to-noise ratio and short training time required by users. Fast and accurate decoding of SSVEP features is a crucial step in SSVEP-BCI research. However, the current researches lack a systematic overview of SSVEP decoding algorithms and analyses of the connections and differences between them, so it is difficult for researchers to choose the optimum algorithm under different situations. To address this problem, this paper focuses on the progress of SSVEP decoding algorithms in recent years and divides them into two categories-trained and non-trained-based on whether training data are needed. This paper also explains the fundamental theories and application scopes of decoding algorithms such as canonical correlation analysis (CCA), task-related component analysis (TRCA) and the extended algorithms, concludes the commonly used strategies for processing decoding algorithms, and discusses the challenges and opportunities in this field in the end.
基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统,因其高信噪比以及用户所需的训练时间短,已成为BCI研究的主要范式之一。快速准确地解码SSVEP特征是SSVEP-BCI研究中的关键一步。然而,当前的研究缺乏对SSVEP解码算法的系统概述,以及对它们之间联系和差异的分析,因此研究人员很难在不同情况下选择最优算法。为了解决这个问题,本文聚焦于近年来SSVEP解码算法的进展,并根据是否需要训练数据将其分为两类——有训练的和无训练的。本文还解释了解码算法如典型相关分析(CCA)、任务相关成分分析(TRCA)及其扩展算法的基本理论和应用范围,总结了处理解码算法的常用策略,并最终讨论了该领域的挑战与机遇。