Suppr超能文献

基于自适应联合损失函数的2019冠状病毒病病变分割网络

[Corona virus disease 2019 lesion segmentation network based on an adaptive joint loss function].

作者信息

Xiao Hanguang, Li Huanqi, Ran Zhiqiang, Zhang Qihang, Zhang Bolong, Wei Yujia, Zhu Xiuhong

机构信息

School of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):743-752. doi: 10.7507/1001-5515.202206051.

Abstract

Corona virus disease 2019 (COVID-19) is an acute respiratory infectious disease with strong contagiousness, strong variability, and long incubation period. The probability of misdiagnosis and missed diagnosis can be significantly decreased with the use of automatic segmentation of COVID-19 lesions based on computed tomography images, which helps doctors in rapid diagnosis and precise treatment. This paper introduced the level set generalized Dice loss function (LGDL) in conjunction with the level set segmentation method based on COVID-19 lesion segmentation network and proposed a dual-path COVID-19 lesion segmentation network (Dual-SAUNet++) to address the pain points such as the complex symptoms of COVID-19 and the blurred boundaries that are challenging to segment. LGDL is an adaptive weight joint loss obtained by combining the generalized Dice loss of the mask path and the mean square error of the level set path. On the test set, the model achieved Dice similarity coefficient of (87.81 ± 10.86)%, intersection over union of (79.20 ± 14.58)%, sensitivity of (94.18 ± 13.56)%, specificity of (99.83 ± 0.43)% and Hausdorff distance of 18.29 ± 31.48 mm. Studies indicated that Dual-SAUNet++ has a great anti-noise capability and it can segment multi-scale lesions while simultaneously focusing on their area and border information. The method proposed in this paper assists doctors in judging the severity of COVID-19 infection by accurately segmenting the lesion, and provides a reliable basis for subsequent clinical treatment.

摘要

2019冠状病毒病(COVID-19)是一种急性呼吸道传染病,具有强传染性、高变异性和长潜伏期。基于计算机断层扫描图像的COVID-19病变自动分割技术有助于医生快速诊断和精准治疗,可显著降低误诊和漏诊概率。本文结合基于COVID-19病变分割网络的水平集分割方法,引入水平集广义骰子损失函数(LGDL),提出了一种双路径COVID-19病变分割网络(Dual-SAUNet++),以解决COVID-19症状复杂、病变边界模糊难以分割等痛点问题。LGDL是一种通过结合掩码路径的广义骰子损失和水平集路径的均方误差得到的自适应权重联合损失。在测试集上,该模型的骰子相似系数为(87.81±10.86)%,交并比为(79.20±14.58)%,敏感度为(94.18±13.56)%,特异度为(99.83±0.43)%,豪斯多夫距离为18.29±31.48毫米。研究表明,Dual-SAUNet++具有很强的抗噪声能力,能够分割多尺度病变,同时关注其面积和边界信息。本文提出的方法通过准确分割病变,协助医生判断COVID-19感染的严重程度,为后续临床治疗提供可靠依据。

相似文献

1
[Corona virus disease 2019 lesion segmentation network based on an adaptive joint loss function].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):743-752. doi: 10.7507/1001-5515.202206051.
2
HFCF-Net: A hybrid-feature cross fusion network for COVID-19 lesion segmentation from CT volumetric images.
Med Phys. 2022 Jun;49(6):3797-3815. doi: 10.1002/mp.15600. Epub 2022 Mar 30.
3
Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network.
Sci Rep. 2022 Feb 3;12(1):1847. doi: 10.1038/s41598-022-05527-x.
4
An effective deep network for automatic segmentation of complex lung tumors in CT images.
Med Phys. 2021 Sep;48(9):5004-5016. doi: 10.1002/mp.15074. Epub 2021 Jul 27.
6
Automatic mandible segmentation from CT image using 3D fully convolutional neural network based on DenseASPP and attention gates.
Int J Comput Assist Radiol Surg. 2021 Oct;16(10):1785-1794. doi: 10.1007/s11548-021-02447-5. Epub 2021 Jul 21.
7
Medical lesion segmentation by combining multimodal images with modality weighted UNet.
Med Phys. 2022 Jun;49(6):3692-3704. doi: 10.1002/mp.15610. Epub 2022 Apr 7.
8
Fully automated lesion segmentation and visualization in automated whole breast ultrasound (ABUS) images.
Quant Imaging Med Surg. 2020 Mar;10(3):568-584. doi: 10.21037/qims.2020.01.12.
9
Precise segmentation of non-enhanced computed tomography in patients with ischemic stroke based on multi-scale U-Net deep network model.
Comput Methods Programs Biomed. 2021 Sep;208:106278. doi: 10.1016/j.cmpb.2021.106278. Epub 2021 Jul 9.

本文引用的文献

2
A Novel Threshold-Based Segmentation Method for Quantification of COVID-19 Lung Abnormalities.
Signal Image Video Process. 2023;17(4):907-914. doi: 10.1007/s11760-022-02183-6. Epub 2022 Mar 28.
3
MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT.
IEEE Access. 2020 Sep 29;8:185786-185795. doi: 10.1109/ACCESS.2020.3027738. eCollection 2020.
4
A morphology-based radiological image segmentation approach for efficient screening of COVID-19.
Biomed Signal Process Control. 2021 Aug;69:102800. doi: 10.1016/j.bspc.2021.102800. Epub 2021 May 19.
5
ADID-UNET-a segmentation model for COVID-19 infection from lung CT scans.
PeerJ Comput Sci. 2021 Jan 26;7:e349. doi: 10.7717/peerj-cs.349. eCollection 2021.
6
RA-UNet: A Hybrid Deep Attention-Aware Network to Extract Liver and Tumor in CT Scans.
Front Bioeng Biotechnol. 2020 Dec 23;8:605132. doi: 10.3389/fbioe.2020.605132. eCollection 2020.
7
Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism.
Int J Imaging Syst Technol. 2021 Mar;31(1):16-27. doi: 10.1002/ima.22527. Epub 2020 Nov 24.
8
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.
9
A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions From CT Images.
IEEE Trans Med Imaging. 2020 Aug;39(8):2653-2663. doi: 10.1109/TMI.2020.3000314.
10
Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images.
IEEE Trans Med Imaging. 2020 Aug;39(8):2626-2637. doi: 10.1109/TMI.2020.2996645.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验