Suppr超能文献

使用集成空间和通道注意力机制的U-Net进行新冠肺炎CT图像自动分割

Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism.

作者信息

Zhou Tongxue, Canu Stéphane, Ruan Su

机构信息

Université de Rouen Normandie, LITIS-QuantIF Rouen France.

INSA de Rouen, LITIS-Apprentissage Rouen France.

出版信息

Int J Imaging Syst Technol. 2021 Mar;31(1):16-27. doi: 10.1002/ima.22527. Epub 2020 Nov 24.

Abstract

The coronavirus disease (COVID-19) pandemic has led to a devastating effect on the global public health. Computed Tomography (CT) is an effective tool in the screening of COVID-19. It is of great importance to rapidly and accurately segment COVID-19 from CT to help diagnostic and patient monitoring. In this paper, we propose a U-Net based segmentation network using attention mechanism. As not all the features extracted from the encoders are useful for segmentation, we propose to incorporate an attention mechanism including a spatial attention module and a channel attention module, to a U-Net architecture to re-weight the feature representation spatially and channel-wise to capture rich contextual relationships for better feature representation. In addition, the focal Tversky loss is introduced to deal with small lesion segmentation. The experiment results, evaluated on a COVID-19 CT segmentation dataset where 473 CT slices are available, demonstrate the proposed method can achieve an accurate and rapid segmentation result on COVID-19. The method takes only 0.29 second to segment a single CT slice. The obtained Dice Score and Hausdorff Distance are 83.1% and 18.8, respectively.

摘要

冠状病毒病(COVID-19)大流行对全球公共卫生造成了毁灭性影响。计算机断层扫描(CT)是筛查COVID-19的有效工具。从CT中快速准确地分割出COVID-19对于辅助诊断和患者监测至关重要。在本文中,我们提出了一种基于U-Net并使用注意力机制的分割网络。由于从编码器提取的并非所有特征都对分割有用,我们建议将包括空间注意力模块和通道注意力模块的注意力机制纳入U-Net架构,以在空间和通道维度上重新加权特征表示,从而捕捉丰富的上下文关系以实现更好的特征表示。此外,引入了焦点Tversky损失来处理小病变分割。在一个有473个CT切片的COVID-19 CT分割数据集上进行评估的实验结果表明,所提出的方法能够在COVID-19上实现准确快速的分割结果。该方法分割单个CT切片仅需0.29秒。获得的Dice分数和豪斯多夫距离分别为83.1%和18.8。

相似文献

6
FAM: focal attention module for lesion segmentation of COVID-19 CT images.FAM:用于COVID-19 CT图像病变分割的焦点注意力模块。
J Real Time Image Process. 2022;19(6):1091-1104. doi: 10.1007/s11554-022-01249-5. Epub 2022 Sep 4.

引用本文的文献

4
Accurately assessing congenital heart disease using artificial intelligence.使用人工智能准确评估先天性心脏病。
PeerJ Comput Sci. 2024 Nov 29;10:e2535. doi: 10.7717/peerj-cs.2535. eCollection 2024.

本文引用的文献

5
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
7
Coronavirus disease 2019 (COVID-19): current status and future perspectives.新型冠状病毒病 2019(COVID-19):现状和未来展望。
Int J Antimicrob Agents. 2020 May;55(5):105951. doi: 10.1016/j.ijantimicag.2020.105951. Epub 2020 Mar 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验