Chen Wan, Cai Yanping, Li Aihua, Su Yanzhao, Jiang Ke
Rocket Force University of Engineering, Xi'an, 710025, China.
Sci Rep. 2023 Sep 4;13(1):14515. doi: 10.1038/s41598-023-41682-5.
To reduce the dimensionality of EEG features and improve classification accuracy, we propose an improved hybrid feature selection method for EEG feature selection. First, MIC is used to remove irrelevant features and redundant features to reduce the search space of the second stage. QPSO is then used to optimize the feature in the second stage to obtain the optimal feature subset. Considering that both dimensionality and classification accuracy affect the performance of feature subsets, we design a new fitness function. Moreover, we optimize the parameters of the classifier while optimizing the feature subset to improve the classification accuracy and reduce the running time of the algorithm. Finally, experiments were performed on EEG and UCI datasets and compared with five existing feature selection methods. The results show that the feature subsets obtained by the proposed method have low dimensionality, high classification accuracy, and low computational complexity, which validates the effectiveness of the proposed method.
为了降低脑电图(EEG)特征的维度并提高分类准确率,我们提出了一种改进的混合特征选择方法用于EEG特征选择。首先,互信息系数(MIC)用于去除不相关特征和冗余特征,以减少第二阶段的搜索空间。然后,量子粒子群优化算法(QPSO)用于在第二阶段优化特征,以获得最优特征子集。考虑到维度和分类准确率都会影响特征子集的性能,我们设计了一种新的适应度函数。此外,在优化特征子集的同时,我们还优化分类器的参数,以提高分类准确率并减少算法的运行时间。最后,在EEG和UCI数据集上进行了实验,并与五种现有的特征选择方法进行了比较。结果表明,所提方法获得的特征子集具有低维度、高分类准确率和低计算复杂度,这验证了所提方法的有效性。