Suppr超能文献

一种基于脑电的功能连接的机器学习框架,用于诊断重度抑郁症(MDD)。

A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD).

机构信息

Center for Intelligent Signal and Imaging Research, Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.

Department of Psychiatry, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.

出版信息

Med Biol Eng Comput. 2018 Feb;56(2):233-246. doi: 10.1007/s11517-017-1685-z. Epub 2017 Jul 13.

Abstract

Major depressive disorder (MDD), a debilitating mental illness, could cause functional disabilities and could become a social problem. An accurate and early diagnosis for depression could become challenging. This paper proposed a machine learning framework involving EEG-derived synchronization likelihood (SL) features as input data for automatic diagnosis of MDD. It was hypothesized that EEG-based SL features could discriminate MDD patients and healthy controls with an acceptable accuracy better than measures such as interhemispheric coherence and mutual information. In this work, classification models such as support vector machine (SVM), logistic regression (LR) and Naïve Bayesian (NB) were employed to model relationship between the EEG features and the study groups (MDD patient and healthy controls) and ultimately achieved discrimination of study participants. The results indicated that the classification rates were better than chance. More specifically, the study resulted into SVM classification accuracy = 98%, sensitivity = 99.9%, specificity = 95% and f-measure = 0.97; LR classification accuracy = 91.7%, sensitivity = 86.66%, specificity = 96.6% and f-measure = 0.90; NB classification accuracy = 93.6%, sensitivity = 100%, specificity = 87.9% and f-measure = 0.95. In conclusion, SL could be a promising method for diagnosing depression. The findings could be generalized to develop a robust CAD-based tool that may help for clinical purposes.

摘要

重度抑郁症(MDD)是一种使人虚弱的精神疾病,可导致功能障碍,并可能成为社会问题。准确且早期的抑郁症诊断可能会变得具有挑战性。本文提出了一个机器学习框架,涉及脑电衍生的同步似然(SL)特征作为输入数据,用于 MDD 的自动诊断。该研究假设基于脑电的 SL 特征可以区分 MDD 患者和健康对照者,其准确性优于半球间相干性和互信息等指标。在这项工作中,采用了支持向量机(SVM)、逻辑回归(LR)和朴素贝叶斯(NB)等分类模型来构建脑电特征与研究组(MDD 患者和健康对照者)之间的关系,最终实现了研究参与者的区分。结果表明,分类率优于随机水平。具体而言,该研究得出 SVM 分类准确率为 98%、灵敏度为 99.9%、特异性为 95%和 F1 度量为 0.97;LR 分类准确率为 91.7%、灵敏度为 86.66%、特异性为 96.6%和 F1 度量为 0.90;NB 分类准确率为 93.6%、灵敏度为 100%、特异性为 87.9%和 F1 度量为 0.95。总之,SL 可能是一种有前途的诊断抑郁症的方法。研究结果可以推广到开发一种稳健的基于 CAD 的工具,这可能有助于临床目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验