Suppr超能文献

脑电信号的多维特征提取及其在中风分类中的应用。

Multi-dimensional feature extraction of EEG signal and its application in stroke classification.

作者信息

Wang Teng, Jia Wenhui, Li Fenglian, Liu Xirui, Zhang Xueying, Hu Fengyun

机构信息

College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China.

Department of Neurology, Shanxi Province People's Hospital, Taiyuan, Shanxi, 030012, China.

出版信息

Sci Rep. 2025 Jun 4;15(1):19589. doi: 10.1038/s41598-025-04756-0.

Abstract

Feature extraction based on EEG signals and construction of classification models using machine learning methods are key to intelligent assisted diagnosis of brain diseases (such as stroke classification). However, the quality of the extracted features directly affects the classification performance. This study proposes a multi-dimensional feature extraction method based on autocorrelation and complexity theory. It introduces an improved multifractal detrended fluctuation analysis (MFDFA) algorithm based on optimized empirical mode decomposition to extract high-quality autocorrelation features. In addition, we find that the ratio of fuzzy entropy between high-frequency band and low-frequency band of cerebral infarction signals is significantly lower than that of cerebral hemorrhage signals. On this basis, we propose a new complexity feature - fuzzy asymmetric index (FAI) based on constant Gaussian membership function. The study then integrates hierarchical fuzzy entropy, asymmetric entropy, and FAI to obtain complex fusion features. These extracted and fused features demonstrate excellent classification performance for differentiating cerebral hemorrhage and cerebral infarction. Using the random forest algorithm with a constant Gaussian membership function, the classification achieves an accuracy of 99.33%, precision of 100%, sensitivity of 98.57%, specificity of 100%, F1-score of 99.23%, and MCC of 98.73%. The proposed multi-dimensional features, combining autocorrelation and complexity characteristics, perform remarkably well in the classification of stroke EEG signals.

摘要

基于脑电信号的特征提取以及使用机器学习方法构建分类模型是脑部疾病智能辅助诊断(如中风分类)的关键。然而,提取特征的质量直接影响分类性能。本研究提出了一种基于自相关和复杂性理论的多维特征提取方法。它引入了一种基于优化经验模态分解的改进多重分形去趋势波动分析(MFDFA)算法来提取高质量的自相关特征。此外,我们发现脑梗死信号高频带与低频带之间的模糊熵比值显著低于脑出血信号。在此基础上,我们基于常数高斯隶属函数提出了一种新的复杂性特征——模糊不对称指数(FAI)。该研究随后整合了分层模糊熵、不对称熵和FAI以获得复杂融合特征。这些提取和融合的特征在区分脑出血和脑梗死方面表现出优异的分类性能。使用具有常数高斯隶属函数的随机森林算法,分类准确率达到99.33%,精确率为100%,灵敏度为98.57%,特异性为100%,F1分数为99.23%,马修斯相关系数为98.73%。所提出的结合自相关和复杂性特征的多维特征在中风脑电信号分类中表现出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08c0/12137714/8079ee584862/41598_2025_4756_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验