Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.
Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, USA.
Alzheimers Dement. 2024 Jan;20(1):421-436. doi: 10.1002/alz.13447. Epub 2023 Sep 4.
Biomarkers remain mostly unavailable for non-Alzheimer's disease neuropathological changes (non-ADNC) such as transactive response DNA-binding protein 43 (TDP-43) proteinopathy, Lewy body disease (LBD), and cerebral amyloid angiopathy (CAA).
A multilabel non-ADNC classifier using magnetic resonance imaging (MRI) signatures was developed for TDP-43, LBD, and CAA in an autopsy-confirmed cohort (N = 214).
A model using demographic, genetic, clinical, MRI, and ADNC variables (amyloid positive [Aβ+] and tau+) in autopsy-confirmed participants showed accuracies of 84% for TDP-43, 81% for LBD, and 81% to 93% for CAA, outperforming reference models without MRI and ADNC biomarkers. In an ADNI cohort (296 cognitively unimpaired, 401 mild cognitive impairment, 188 dementia), Aβ and tau explained 33% to 43% of variance in cognitive decline; imputed non-ADNC explained an additional 16% to 26%. Accounting for non-ADNC decreased the required sample size to detect a 30% effect on cognitive decline by up to 28%.
Our results lead to a better understanding of the factors that influence cognitive decline and may lead to improvements in AD clinical trial design.
生物标志物在非阿尔茨海默病神经病理变化(非 ADNC)中仍然大多不可用,例如转激活反应 DNA 结合蛋白 43(TDP-43)蛋白病、路易体病(LBD)和脑淀粉样血管病(CAA)。
使用磁共振成像(MRI)特征开发了一种多标签非 ADNC 分类器,用于 TDP-43、LBD 和 CAA 在尸检证实的队列(N=214)中。
在尸检证实的参与者中使用人口统计学、遗传学、临床、MRI 和 ADNC 变量(淀粉样蛋白阳性 [Aβ+] 和 tau+)的模型显示 TDP-43 的准确率为 84%,LBD 的准确率为 81%,CAA 的准确率为 81%至 93%,优于没有 MRI 和 ADNC 生物标志物的参考模型。在 ADNI 队列(296 名认知正常、401 名轻度认知障碍、188 名痴呆)中,Aβ 和 tau 解释了认知能力下降的 33%至 43%;推断的非 ADNC 解释了另外 16%至 26%。考虑到非 ADNC,检测对认知能力下降有 30%影响所需的样本量减少了 28%。
我们的研究结果有助于更好地了解影响认知能力下降的因素,并可能有助于改进 AD 临床试验设计。