Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
Departments of Pediatrics and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
Methods Mol Biol. 2024;2707:279-303. doi: 10.1007/978-1-0716-3401-1_19.
Introduction or knock-in of precise genomic modifications remains one of the most important applications of CRISPR/Cas9 in all model systems including zebrafish. The most widely used type of donor template containing the desired modification is single-stranded DNA (ssDNA), either in the form of single-stranded oligodeoxynucleotides (ssODN) (<150 nucleotides (nt)) or as long ssDNA (lssDNA) molecules (up to about 2000 nt). Despite the challenges posed by DNA repair after DNA double-strand breaks, knock-in of precise mutations is relatively straightforward in zebrafish. Knock-in efficiency can be enhanced by careful donor template design, using lssDNA as template or tethering the donor template DNA to the Cas9-guide RNA complex. Other point mutation methods such as base editing and prime editing are starting to be applied in zebrafish and many other model systems. However, these methods may not always be sufficiently accessible or may have limited capacity to perform all desired mutation knock-ins which are possible with ssDNA-based knock-in methods. Thus, it is likely that there will be complementarity in the technologies used for generating precise mutants. Here, we review and describe a suite of CRISPR/Cas9 knock-in procedures utilizing ssDNA as the donor template in zebrafish, point out the potential challenges and suggest possible approaches for their solution ultimately leading to successful generation of precise mutant lines.
介绍或敲入精确的基因组修饰仍然是 CRISPR/Cas9 在包括斑马鱼在内的所有模型系统中的最重要应用之一。最广泛使用的含有所需修饰的供体模板类型是单链 DNA(ssDNA),形式为单链寡脱氧核苷酸(ssODN)(<150 个核苷酸(nt))或长 ssDNA(lssDNA)分子(长达约 2000 nt)。尽管在 DNA 双链断裂后修复 DNA 存在挑战,但在斑马鱼中精确突变的敲入相对简单。通过仔细的供体模板设计、使用 lssDNA 作为模板或将供体模板 DNA 固定到 Cas9 指导 RNA 复合物上,可以提高敲入效率。其他点突变方法,如碱基编辑和 Prime 编辑,开始在斑马鱼和许多其他模型系统中应用。然而,这些方法可能并不总是足够容易获得,或者可能有限制性,无法执行所有使用 ssDNA 敲入方法可能实现的所需突变敲入。因此,用于产生精确突变体的技术可能具有互补性。在这里,我们综述并描述了一系列利用 ssDNA 作为供体模板的 CRISPR/Cas9 敲入程序,指出了潜在的挑战,并提出了可能的解决方案,最终导致成功产生精确的突变系。