Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands.
Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
Dis Model Mech. 2018 Oct 18;11(10):dmm035469. doi: 10.1242/dmm.035469.
The zebrafish () has become a popular vertebrate model organism to study organ formation and function due to its optical clarity and rapid embryonic development. The use of genetically modified zebrafish has also allowed identification of new putative therapeutic drugs. So far, most studies have relied on broad overexpression of transgenes harboring patient-derived mutations or loss-of-function mutants, which incompletely model the human disease allele in terms of expression levels or cell-type specificity of the endogenous gene of interest. Most human genetically inherited conditions are caused by alleles carrying single nucleotide changes resulting in altered gene function. Introduction of such point mutations in the zebrafish genome would be a prerequisite to recapitulate human disease but remains challenging to this day. We present an effective approach to introduce small nucleotide changes in the zebrafish genome. We generated four different knock-in lines carrying distinct human cardiovascular-disorder-causing missense mutations in their zebrafish orthologous genes by combining CRISPR/Cas9 with a short template oligonucleotide. Three of these lines carry gain-of-function mutations in genes encoding the pore-forming (Kir6.1, ) and regulatory (SUR2, ) subunits of an ATP-sensitive potassium channel (K) linked to Cantú syndrome (CS). Our heterozygous zebrafish knock-in lines display significantly enlarged ventricles with enhanced cardiac output and contractile function, and distinct cerebral vasodilation, demonstrating the causality of the introduced mutations for CS. These results demonstrate that introducing patient alleles in their zebrafish orthologs promises a broad application for modeling human genetic diseases, paving the way for new therapeutic strategies using this model organism.
斑马鱼 () 由于其光学透明度和快速胚胎发育,已成为研究器官形成和功能的流行脊椎动物模式生物。 对转基因斑马鱼的利用也允许鉴定新的潜在治疗药物。 到目前为止,大多数研究依赖于对携带患者衍生突变或功能丧失突变的转基因的广泛过表达,这在感兴趣的内源性基因的表达水平或细胞类型特异性方面不能完全模拟人类疾病等位基因。 大多数人类遗传性疾病是由携带单个核苷酸变化的等位基因引起的,导致基因功能改变。 在斑马鱼基因组中引入此类点突变将是重现人类疾病的前提条件,但至今仍然具有挑战性。 我们提出了一种在斑马鱼基因组中引入小核苷酸变化的有效方法。 通过将 CRISPR/Cas9 与短模板寡核苷酸结合,我们在其斑马鱼同源基因中产生了四个不同的携带人类心血管疾病引起的错义突变的敲入系,这些错义突变分别存在于编码三磷酸腺苷敏感钾通道 (K) 的孔形成 (Kir6.1, ) 和调节 (SUR2, ) 亚基的基因中。 这些系中的三个携带与 Cantú 综合征 (CS) 相关的编码功能获得性突变的基因。 我们的杂合斑马鱼敲入系显示出明显增大的心室,具有增强的心输出量和收缩功能,以及明显的大脑血管扩张,表明引入的突变对 CS 的因果关系。 这些结果表明,在其斑马鱼同源物中引入患者等位基因有望广泛应用于模拟人类遗传疾病,为使用这种模式生物的新治疗策略铺平道路。