Suppr超能文献

基于多模态神经影像学和机器学习预测胶质母细胞瘤患者的生存情况。

Predicting survival in glioblastoma with multimodal neuroimaging and machine learning.

机构信息

Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Center for Health Sciences, Oklahoma State University, Tulsa, OK, 74136, USA.

出版信息

J Neurooncol. 2023 Sep;164(2):309-320. doi: 10.1007/s11060-023-04439-8. Epub 2023 Sep 5.

Abstract

PURPOSE

Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care.

METHODS

GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models.

RESULTS

The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks.

CONCLUSION

We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.

摘要

目的

胶质母细胞瘤(GBM)是最常见和侵袭性最强的恶性胶质瘤,总体中位生存期不足两年。在 GBM 患者治疗前预测生存能力将导致疾病管理、临床试验入组和患者护理的改善。

方法

从华盛顿大学医学中心神经外科脑肿瘤服务中回顾性招募了 133 名 GBM 患者(平均年龄 60.8 岁,中位生存期 14.1 个月,57.9%为男性)。所有患者在手术前均完成结构神经影像学和静息态功能磁共振成像(RS-fMRI)。使用人口统计学数据、皮质厚度(CT)测量值和静息态功能网络连接(FC)来训练深度神经网络,根据生存情况(<1 年、1-2 年、>2 年)对患者进行分类。基于训练模型的排列特征重要性确定了生存的最强预测因素。

结果

模型在对生存(<1 年、1-2 年、>2 年)进行分类时,综合交叉验证和保留样本的准确率为 90.6%。最强的人口统计学预测因素是诊断时的年龄和性别。与生存相关的最强 CT 预测因素包括颞上回、海马旁回、距状皮层、三角部和中颞区。最强的 FC 特征主要涉及背侧和下躯体运动、视觉和扣带前运动网络。

结论

我们证明,机器学习可以在任何手术或医疗干预之前,基于多模态神经影像学准确地对 GBM 患者的生存进行分类。这些结果是在没有关于发病症状、治疗、手术后结果或肿瘤基因组信息的情况下获得的。我们的结果表明,GBM 对大脑的结构和功能组织具有全局影响,这是生存的预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acdc/10522528/6e763d384d20/11060_2023_4439_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验