Suppr超能文献

基于级联 DNA 忆阻器的动态存储池的存储计算

Reservoir Computing With Dynamic Reservoir using Cascaded DNA Memristors.

出版信息

IEEE Trans Biomed Circuits Syst. 2024 Feb;18(1):131-144. doi: 10.1109/TBCAS.2023.3312300. Epub 2024 Jan 26.

Abstract

This article proposes molecular and DNA memristors where the state is defined by a single output variable. In past molecular and DNA memristors, the state of the memristor was defined based on two output variables. These memristors cannot be cascaded because their input and output sizes are different. We introduce a different definition of state for the molecular and DNA memristors. This change allows cascading of memristors. The proposed memristors are used to build reservoir computing (RC) models that can process temporal inputs. An RC system consists of two parts: reservoir and readout layer. The first part projects the information from the input space into a high-dimensional feature space. We also study the input-state characteristics of the cascaded memristors and show that the cascaded memristors retain the memristive behavior. The cascade connections in a reservoir can change dynamically; this allows the synthesis of a dynamic reservoir as opposed to a static one in the prior work. This reduces the number of memristors significantly compared to a static reservoir. The inputs to the readout layer correspond to one molecule per state instead of two; this significantly reduces the number of molecular and DSD reactions for the readout layer. A DNA RC system consisting of DNA memristors and a DNA readout layer is used to detect seizures from intra-cranial electroencephalogram (iEEG). We also demonstrate that a DNA RC system consisting of three cascaded DNA memristors and a DNA readout layer can be used to solve the time-series prediction task. The proposed approach can reduce the number of DNA strand displacement (DSD) reactions by three to five times compared to prior approaches.

摘要

本文提出了分子和 DNA 忆阻器,其中状态由单个输出变量定义。在过去的分子和 DNA 忆阻器中,忆阻器的状态是基于两个输出变量定义的。这些忆阻器不能级联,因为它们的输入和输出大小不同。我们为分子和 DNA 忆阻器引入了一种不同的状态定义。这种变化允许忆阻器级联。所提出的忆阻器用于构建可以处理时间输入的储层计算 (RC) 模型。RC 系统由两部分组成:储层和读出层。第一部分将信息从输入空间投影到高维特征空间。我们还研究了级联忆阻器的输入-状态特性,并表明级联忆阻器保留了忆阻特性。储层中的级联连接可以动态变化;这允许合成动态储层,而不是之前工作中的静态储层。与静态储层相比,这大大减少了忆阻器的数量。读出层的输入对应于每个状态的一个分子,而不是两个;这大大减少了读出层的分子和 DSD 反应数量。由 DNA 忆阻器和 DNA 读出层组成的 DNA RC 系统用于从颅内脑电图 (iEEG) 中检测癫痫发作。我们还证明,由三个级联 DNA 忆阻器和 DNA 读出层组成的 DNA RC 系统可用于解决时间序列预测任务。与之前的方法相比,该方法可以将 DNA 链置换 (DSD) 反应的数量减少三到五倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验