Suppr超能文献

用于物理储层计算的动态忆阻器。

Dynamic memristor for physical reservoir computing.

作者信息

Zhang Qi-Rui, Ouyang Wei-Lun, Wang Xue-Mei, Yang Fan, Chen Jian-Gang, Wen Zhi-Xing, Liu Jia-Xin, Wang Ge, Liu Qing, Liu Fu-Cai

机构信息

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China.

School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

Nanoscale. 2024 Jul 25;16(29):13847-13860. doi: 10.1039/d4nr01445f.

Abstract

Reservoir computing (RC) has attracted considerable attention for its efficient handling of temporal signals and lower training costs. As a nonlinear dynamic system, RC can map low-dimensional inputs into high-dimensional spaces and implement classification using a simple linear readout layer. The memristor exhibits complex dynamic characteristics due to its internal physical processes, which renders them an ideal choice for the implementation of physical reservoir computing (PRC) systems. This review focuses on PRC systems based on memristors, explaining the resistive switching mechanism at the device level and emphasizing the tunability of their dynamic behavior. The development of memristor-based reservoir computing systems is highlighted, along with discussions on the challenges faced by this field and potential future research directions.

摘要

储层计算(RC)因其对时间信号的高效处理和较低的训练成本而备受关注。作为一个非线性动态系统,RC可以将低维输入映射到高维空间,并使用简单的线性读出层实现分类。忆阻器由于其内部物理过程而呈现出复杂的动态特性,这使其成为实现物理储层计算(PRC)系统的理想选择。本综述聚焦于基于忆阻器的PRC系统,在器件层面解释电阻开关机制,并强调其动态行为的可调性。重点介绍了基于忆阻器的储层计算系统的发展,同时讨论了该领域面临的挑战以及未来潜在的研究方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验