Jang Yoon Ho, Lee Soo Hyung, Han Janguk, Kim Woohyun, Shim Sung Keun, Cheong Sunwoo, Woo Kyung Seok, Han Joon-Kyu, Hwang Cheol Seong
Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Mechatronics Research Center, Samsung Electronics, Banwal-dong, Hwasung-si, Gyeonggi-do, 18448, Republic of Korea.
Adv Mater. 2024 Feb;36(7):e2309314. doi: 10.1002/adma.202309314. Epub 2023 Dec 7.
Memristor-based physical reservoir computing (RC) is a robust framework for processing complex spatiotemporal data parallelly. However, conventional memristor-based reservoirs cannot capture the spatial relationship between the time-varying inputs due to the specific mapping scheme assigning one input signal to one memristor conductance. Here, a physical "graph reservoir" is introduced using a metal cell at the diagonal-crossbar array (mCBA) with dynamic self-rectifying memristors. Input and inverted input signals are applied to the word and bit lines of the mCBA, respectively, storing the correlation information between input signals in the memristors. In this way, the mCBA graph reservoirs can map the spatiotemporal correlation of the input data in a high-dimensional feature space. The high-dimensional mapping characteristics of the graph reservoir achieve notable results, including a normalized root-mean-square error of 0.09 in Mackey-Glass time series prediction, a 97.21% accuracy in MNIST recognition, and an 80.0% diagnostic accuracy in human connectome classification.
基于忆阻器的物理储层计算(RC)是一种用于并行处理复杂时空数据的强大框架。然而,由于将一个输入信号分配给一个忆阻器电导的特定映射方案,传统的基于忆阻器的储层无法捕捉时变输入之间的空间关系。在此,使用具有动态自整流忆阻器的对角交叉阵列(mCBA)中的金属单元引入了一种物理“图储层”。输入信号和反相输入信号分别施加到mCBA的字线和位线,将输入信号之间的相关信息存储在忆阻器中。通过这种方式,mCBA图储层可以在高维特征空间中映射输入数据的时空相关性。图储层的高维映射特性取得了显著成果,包括在Mackey-Glass时间序列预测中归一化均方根误差为0.09,在MNIST识别中准确率为97.21%,以及在人类连接组分类中诊断准确率为80.0%。