Lin Xin, Pan Fei, Ma Yong, Wei Yuling, Yang Kang, Wu Zihong, Guan Juan, Ding Bin, Liu Bin, Xiang Jinwu, Chen Yuli
Institute of Solid Mechanics, Beihang University, Beijing 100191, China.
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China.
Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2305380120. doi: 10.1073/pnas.2305380120. Epub 2023 Sep 5.
Proactively programming materials toward target nonlinear mechanical behaviors is crucial to realize customizable functions for advanced devices and systems, which arouses persistent explorations for rapid and efficient inverse design strategies. Herein, we propose a "mechanical Fourier transform" strategy to program mechanical behaviors of materials by mimicking the concept of Fourier transform. In this strategy, an arbitrary target force-displacement curve is decomposed into multiple cosine curves and a constant curve, each of which is realized by a rationally designed multistable module in an array-structured metamaterial. Various target curves with distinct shapes can be rapidly programmed and reprogrammed through only amplitude modulation on the modules. Two exemplary metamaterials are demonstrated to validate the strategy with a macroscale prototype based on magnet lattice and a microscale prototype based on an etched silicon wafer. This strategy applies to a variety of scales, constituents, and structures, and paves a way for the property programming of materials.
主动地将材料设计成具有目标非线性力学行为对于实现先进设备和系统的可定制功能至关重要,这引发了对快速高效逆设计策略的持续探索。在此,我们提出一种“机械傅里叶变换”策略,通过模仿傅里叶变换的概念来设计材料的力学行为。在该策略中,任意目标力 - 位移曲线被分解为多个余弦曲线和一条常数曲线,每条曲线都由阵列结构超材料中合理设计的多稳态模块实现。仅通过对模块进行幅度调制,就能快速编程和重新编程各种形状各异的目标曲线。通过基于磁晶格的宏观原型和基于蚀刻硅片的微观原型,展示了两种示例性超材料来验证该策略。此策略适用于各种尺度、成分和结构,为材料的性能设计铺平了道路。