Uceta Helena, Cabrera-Espinoza Andrea, Barrejón Myriam, Sánchez José G, Gutierrez-Fernandez Edgar, Kosta Ivet, Martín Jaime, Collavini Silvia, Martínez-Ferrero Eugenia, Langa Fernando, Delgado Juan Luis
Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, Avenida Carlos III S/N, Toledo 45071, Spain.
POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San Sebastián 20018, Spain.
ACS Appl Mater Interfaces. 2023 Sep 27;15(38):45212-45228. doi: 10.1021/acsami.3c07476. Epub 2023 Sep 6.
The incorporation of p-type functionalized carbon nanohorns (CNHs) in perovskite solar cells (PSCs) and their comparison with p-type functionalized single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) are reported in this study for the first time. These p-type functionalized carbon nanomaterial (CNM) derivatives were successfully synthesized by [2 + 1] cycloaddition reaction with nitrenes formed from triphenylamine (TPA) and 9-phenyl carbazole (Cz)-based azides, yielding CNHs-TPA, CNHs-Cz, SWCNTs-Cz, SWCNTs-TPA, DWCNTs-TPA, and DWCNTs-Cz. These six novel CNMs were incorporated into the spiro-OMeTAD-based hole transport layer (HTL) to evaluate their impact on regular mesoporous PSCs. The photovoltaic results indicate that all p-type functionalized CNMs significantly improve the power conversion efficiency (PCE), mainly by enhancing the short-circuit current density () and fill factor (FF). TPA-functionalized derivatives increased the PCE by 12-17% compared to the control device without CNMs, while Cz-functionalized derivatives resulted in a PCE increase of 4-8%. Devices prepared with p-type functionalized CNHs exhibited a slightly better PCE compared with those based on SWCNTs and DWCNTs derivatives. The increase in hole mobility of spiro-OMeTAD, additional p-type doping, better energy alignment with the perovskite layer, and enhanced morphology and contact interface play important roles in enhancing the performance of the device. Furthermore, the incorporation of p-type functionalized CNMs into the spiro-OMeTAD layer increased device stability by improving the hydrophobicity of the layer and enhancing the hole transport across the MAPI/spiro-OMeTAD interface. After 28 days under ambient conditions and darkness, TPA-functionalized CNMs maintained the performance of the device by over 90%, while Cz-functionalized CNMs preserved it between 75 and 85%.
本研究首次报道了将p型功能化碳纳米角(CNHs)掺入钙钛矿太阳能电池(PSCs)中,并将其与p型功能化单壁和双壁碳纳米管(SWCNTs和DWCNTs)进行比较。这些p型功能化碳纳米材料(CNM)衍生物通过与由三苯胺(TPA)和9-苯基咔唑(Cz)基叠氮化物形成的氮烯进行[2 + 1]环加成反应成功合成,得到CNHs-TPA、CNHs-Cz、SWCNTs-Cz、SWCNTs-TPA、DWCNTs-TPA和DWCNTs-Cz。将这六种新型CNMs掺入基于螺环-OMeTAD的空穴传输层(HTL)中,以评估它们对常规介孔PSCs的影响。光伏结果表明,所有p型功能化CNMs均显著提高了功率转换效率(PCE),主要是通过提高短路电流密度()和填充因子(FF)。与不含CNMs的对照器件相比,TPA功能化衍生物使PCE提高了12 - 17%,而Cz功能化衍生物使PCE提高了4 - 8%。与基于SWCNTs和DWCNTs衍生物的器件相比,用p型功能化CNHs制备的器件表现出略好的PCE。螺环-OMeTAD空穴迁移率的提高、额外的p型掺杂、与钙钛矿层更好的能量匹配以及增强的形貌和接触界面在提高器件性能方面发挥着重要作用。此外,将p型功能化CNMs掺入螺环-OMeTAD层通过改善该层的疏水性和增强空穴在MAPI/螺环-OMeTAD界面的传输提高了器件稳定性。在环境条件和黑暗中放置28天后,TPA功能化CNMs使器件性能保持在90%以上,而Cz功能化CNMs将其保持在75%至85%之间。