Suppr超能文献

基于两阶段上下文变换的卷积神经网络的 CT 图像气道提取。

Two-stage contextual transformer-based convolutional neural network for airway extraction from CT images.

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.

出版信息

Artif Intell Med. 2023 Sep;143:102637. doi: 10.1016/j.artmed.2023.102637. Epub 2023 Aug 12.

Abstract

Accurate airway segmentation from computed tomography (CT) images is critical for planning navigation bronchoscopy and realizing a quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). Existing methods face difficulty in airway segmentation, particularly for the small branches of the airway. These difficulties arise due to the constraints of limited labeling and failure to meet clinical use requirements in COPD. We propose a two-stage framework with a novel 3D contextual transformer for segmenting the overall airway and small airway branches using CT images. The method consists of two training stages sharing the same modified 3D U-Net network. The novel 3D contextual transformer block is integrated into both the encoder and decoder path of the network to effectively capture contextual and long-range information. In the first training stage, the proposed network segments the overall airway with the overall airway mask. To improve the performance of the segmentation result, we generate the intrapulmonary airway branch label, and train the network to focus on producing small airway branches in the second training stage. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analyses demonstrate that our proposed method extracts significantly more branches and longer lengths of the airway tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.

摘要

从计算机断层扫描 (CT) 图像中准确分割气道对于规划导航支气管镜检查和实现气道相关慢性阻塞性肺疾病 (COPD) 的定量评估至关重要。现有的方法在气道分割方面面临困难,特别是对于气道的小分支。这些困难源于有限标签的限制以及无法满足 COPD 临床应用的要求。我们提出了一种两阶段框架,使用 CT 图像通过新颖的 3D 上下文转换器来分割整个气道和小气道分支。该方法由两个共享相同修改后的 3D U-Net 网络的训练阶段组成。新颖的 3D 上下文转换器块被集成到网络的编码器和解码器路径中,以有效地捕获上下文和远程信息。在第一训练阶段,所提出的网络使用整体气道掩模分割整体气道。为了提高分割结果的性能,我们生成了肺内气道分支标签,并在第二训练阶段训练网络专注于产生小气道分支。在内部和多个公共数据集上进行了广泛的实验。定量和定性分析表明,我们提出的方法提取了更多的分支和更长的气道树长度,同时实现了最先进的气道分割性能。代码可在 https://github.com/zhaozsq/airway_segmentation 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验