Jiménez-Ruiz Jose A, Reinoso-Arija Rocio, Marin-Hinojosa Carmen, Fernandez-Boza Alba, Muñoz-Sanchez Belén, Carrera-Cueva Carlos, Caballero Candelaria, Quintana-Gallego Esther, Otero-Candelera Remedios, Lopez-Campos José Luis
Research Group on Electronic Technology and Industrial Computing (TIC-150), University of Seville, Seville, Spain.
Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla , Avda. Manuel Siurot, s/n. 41013, Seville, Spain.
Sci Rep. 2025 Apr 22;15(1):13931. doi: 10.1038/s41598-025-98522-x.
Identifying noninvasive specific disease biomarkers that can provide valuable information about chronic obstructive pulmonary disease (COPD) progression, potential complications, or treatment response is of paramount importance. In this study, we propose the validation of an innovative near-infrared (NIR) device that utilizes near-infrared light reflectance techniques combined with data validation through a convolutional neural network for the detection of substance P in non-invasive saliva samples. We conducted an analytical observational cross-sectional study at a leading university hospital between January and March 2022, including patients with COPD and controls without the disease. Following the collection of clinical data, a saliva sample was obtained for the determination of substance P which was analyzed both by the NIR device and an Enzyme-Linked Immunosorbent Assay. Direct comparisons were made, and Bland-Altman plots were constructed to assess the level of agreement between the two measurements. The sample consisted of 102 subjects, 44 with COPD and 58 controls. The average differences between the two measurement methods yielded similar results with no significant differences between them, showing a value of 110.2 (16.1) pg/ml for the NIR device and 110.5 (16.7) pg/ml for the ELISA determination (p > 0.05). The Bland-Altman plots show a small difference and a level of agreement consistent with good measurement by the NIR device. The results of this study validate the efficacy of a NIR device combined with a convolutional neural network for detecting substance P in the saliva of COPD patients.
识别能够提供有关慢性阻塞性肺疾病(COPD)进展、潜在并发症或治疗反应的有价值信息的非侵入性特异性疾病生物标志物至关重要。在本研究中,我们提议验证一种创新的近红外(NIR)设备,该设备利用近红外光反射技术,并通过卷积神经网络进行数据验证,以检测无创唾液样本中的P物质。我们于2022年1月至3月在一家顶尖大学医院进行了一项分析性观察性横断面研究,纳入了COPD患者和无该疾病的对照组。收集临床数据后,获取唾液样本以测定P物质,该样本由NIR设备和酶联免疫吸附测定法进行分析。进行了直接比较,并构建了Bland-Altman图以评估两种测量方法之间的一致性水平。样本包括102名受试者,其中44名患有COPD,58名作为对照。两种测量方法之间的平均差异产生了相似的结果,两者之间无显著差异,NIR设备测得的值为110.2(16.1)pg/ml,ELISA测定法测得的值为110.5(16.7)pg/ml(p>0.05)。Bland-Altman图显示差异较小,且一致性水平表明NIR设备测量效果良好。本研究结果验证了结合卷积神经网络的NIR设备在检测COPD患者唾液中P物质方面的有效性。