Suppr超能文献

基于活动监测的深度学习对 ADHD 诊断的洞察:年龄和性别亚组中闭塞图的定量解释。

Insight into ADHD diagnosis with deep learning on Actimetry: Quantitative interpretation of occlusion maps in age and gender subgroups.

机构信息

Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, Valladolid, Spain.

Centro de Salud Jardinillos, 34001 Palencia, Spain.

出版信息

Artif Intell Med. 2023 Sep;143:102630. doi: 10.1016/j.artmed.2023.102630. Epub 2023 Aug 4.

Abstract

UNLABELLED

Attention Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in childhood that often persists into adulthood. Objectively diagnosing ADHD can be challenging due to the reliance on subjective questionnaires in clinical assessment. Fortunately, recent advancements in artificial intelligence (AI) have shown promise in providing objective diagnoses through the analysis of medical images or activity recordings. These AI-based techniques have demonstrated accurate ADHD diagnosis; however, the growing complexity of deep learning models has introduced a lack of interpretability. These models often function as black boxes, unable to offer meaningful insights into the data patterns that characterize ADHD.

OBJECTIVE

This paper proposes a methodology to interpret the output of an AI-based diagnosis system for combined ADHD in age and gender-stratified populations.

METHODS

Our system is based on the analysis of 24 hour-long activity records using Convolutional Neural Networks (CNNs) to classify spectrograms of activity windows. These windows are interpreted using occlusion maps to highlight the time-frequency patterns explaining ADHD activity.

RESULTS

Significant differences in the frequency patterns between ADHD and controls both in diurnal and nocturnal activity were found for all the populations. Temporal dispersion also presented differences in the male population.

CONCLUSION

The proposed interpretation techniques for CNNs highlighted gender- and age-related differences between ADHD patients and controls. Leveraging these differences could potentially lead to improved diagnostic accuracy, especially if a larger and more balanced dataset is utilized.

SIGNIFICANCE

Our findings pave the way for the development of an AI-based diagnosis system for ADHD that offers interpretability, thereby providing valuable insights into the underlying etiology of the disease.

摘要

未加标签

注意力缺陷/多动障碍(ADHD)是一种在儿童中普遍存在的神经发育障碍,通常会持续到成年。由于在临床评估中依赖主观问卷,客观诊断 ADHD 可能具有挑战性。幸运的是,人工智能(AI)的最新进展在通过分析医学图像或活动记录提供客观诊断方面显示出了前景。这些基于 AI 的技术已经证明了 ADHD 的准确诊断;然而,深度学习模型的日益复杂性导致了缺乏可解释性。这些模型通常作为黑盒运行,无法提供对 ADHD 特征的数据模式的有意义见解。

目的

本文提出了一种解释基于 AI 的综合 ADHD 诊断系统在年龄和性别分层人群中的输出的方法。

方法

我们的系统基于使用卷积神经网络(CNNs)对 24 小时长的活动记录进行分析,以对活动窗口的声谱图进行分类。使用遮挡图对这些窗口进行解释,以突出解释 ADHD 活动的时频模式。

结果

在所有人群中,ADHD 和对照组的昼夜活动的频率模式都存在显著差异。男性人群的时间分散也存在差异。

结论

为 CNN 提出的解释技术强调了 ADHD 患者和对照组之间的性别和年龄相关差异。利用这些差异可能会提高诊断准确性,特别是如果使用更大和更平衡的数据集。

意义

我们的发现为开发提供可解释性的基于 AI 的 ADHD 诊断系统铺平了道路,从而为该疾病的潜在病因提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验