Wang Xiaofang, Jia Qianfang, Liang Lvyuan, Zhou Weiwei, Yang Weihua, Mu Jingfeng
Hebei University of Chinese Medicine, Shijiazhuang, China.
Department of Children's Rehabilitation, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
Front Hum Neurosci. 2025 Apr 10;19:1577585. doi: 10.3389/fnhum.2025.1577585. eCollection 2025.
BACKGROUND: Artificial Intelligence (AI), has garnered attention in research on attention deficit hyperactivity disorder (ADHD). In the future, AI may have clinical applications in ADHD, particularly in facilitating the objective diagnosis and classification of ADHD. This study aimed to comprehensively analyze the current status and research frontiers of AI applications in ADHD, identifying hotspots and trends to guide future research directions and promote clinical advancements in this field. METHODS: Articles in the field of AI applications in ADHD were from the Web of Science Core Collection (WoSCC) database. Analysis was conducted using CiteSpace 6.3.R.1. Additionally, high-impact articles were analyzed. RESULTS: A total of 342 articles from 50 countries and regions were included. The United States led with 103 articles, having the highest H-index of 21, followed by China with 69 articles, and England with 34 articles. The State University of New York System produced the most articles (11), and had the most articles (12). Burst keywords in 2022-2024 included "diagnosis," "network," "attention deficit hyperactivity disorder" and "artificial intelligence." CONCLUSION: AI technologies have become a prominent topic in ADHD research, with the United States, China, and England leading in articles and influence. The State University of New York System was the most influential institution, while stood out as the key journal. Utilizing networks and other AI technologies for diagnosing ADHD represents current hotspots and future trends, potentially offering objective indicators for ADHD.
背景:人工智能(AI)在注意力缺陷多动障碍(ADHD)研究中已受到关注。未来,AI可能在ADHD的临床应用中发挥作用,特别是在促进ADHD的客观诊断和分类方面。本研究旨在全面分析AI在ADHD应用中的现状和研究前沿,确定热点和趋势,以指导未来的研究方向并推动该领域的临床进展。 方法:ADHD领域中AI应用的文章来自科学网核心合集(WoSCC)数据库。使用CiteSpace 6.3.R.1进行分析。此外,还对高影响力文章进行了分析。 结果:共纳入来自50个国家和地区的342篇文章。美国以103篇文章领先,H指数最高为21,其次是中国有69篇文章,英国有34篇文章。纽约州立大学系统发表的文章最多(11篇),且被引用文章最多(12篇)。2022 - 2024年的爆发关键词包括“诊断”、“网络”、“注意力缺陷多动障碍”和“人工智能”。 结论:AI技术已成为ADHD研究中的一个突出主题,美国、中国和英国在文章数量和影响力方面领先。纽约州立大学系统是最具影响力的机构,而[具体期刊名未给出]是关键期刊。利用网络等AI技术诊断ADHD是当前热点和未来趋势,可能为ADHD提供客观指标。
Front Hum Neurosci. 2025-4-10
Front Med (Lausanne). 2024-11-20
Clin Exp Med. 2024-8-23
Front Biosci (Landmark Ed). 2022-8-31
Dev Cogn Neurosci. 2025-4
J Clin Exp Neuropsychol. 2024-12
J Med Internet Res. 2025-1-7
Int J Ophthalmol. 2024-12-18
JAMA Psychiatry. 2025-1-1