Suppr超能文献

重访大语言模型时代的关系抽取

Revisiting Relation Extraction in the era of Large Language Models.

作者信息

Wadhwa Somin, Amir Silvio, Wallace Byron C

机构信息

Northeastern University.

出版信息

Proc Conf Assoc Comput Linguist Meet. 2023 Jul;2023:15566-15589. doi: 10.18653/v1/2023.acl-long.868.

Abstract

Relation extraction (RE) is the core NLP task of inferring semantic relationships between entities from text. Standard supervised RE techniques entail training modules to tag tokens comprising entity spans and then predict the relationship between them. Recent work has instead treated the problem as a task, linearizing relations between entities as target strings to be generated conditioned on the input. Here we push the limits of this approach, using larger language models (GPT-3 and Flan-T5 large) than considered in prior work and evaluating their performance on standard RE tasks under varying levels of supervision. We address issues inherent to evaluating generative approaches to RE by doing human evaluations, in lieu of relying on exact matching. Under this refined evaluation, we find that: (1) prompting with GPT-3 achieves near SOTA performance, i.e., roughly equivalent to existing models; (2) Flan-T5 is not as capable in the few-shot setting, but supervising and fine-tuning it with Chain-of-Thought (CoT) style explanations (generated via GPT-3) yields SOTA results. We release this model as a new baseline for RE tasks.

摘要

关系抽取(RE)是自然语言处理(NLP)的核心任务,即从文本中推断实体之间的语义关系。标准的监督式关系抽取技术需要训练模块对构成实体跨度的词元进行标记,然后预测它们之间的关系。相反,最近的工作将该问题视为一项任务,将实体之间的关系线性化为根据输入生成的目标字符串。在这里,我们拓展了这种方法的极限,使用了比先前工作中考虑的更大的语言模型(GPT-3和Flan-T5 large),并在不同监督水平下评估它们在标准关系抽取任务上的性能。我们通过进行人工评估来解决评估关系抽取生成方法所固有的问题,而不是依赖于精确匹配。在这种精细的评估下,我们发现:(1)使用GPT-3进行提示可实现接近最优的性能,即大致等同于现有模型;(2)Flan-T5在少样本设置中能力较弱,但使用思维链(CoT)风格的解释(通过GPT-3生成)对其进行监督和微调可产生最优结果。我们将此模型作为关系抽取任务的新基线发布。

相似文献

1
Revisiting Relation Extraction in the era of Large Language Models.
Proc Conf Assoc Comput Linguist Meet. 2023 Jul;2023:15566-15589. doi: 10.18653/v1/2023.acl-long.868.
5
A Study of Biomedical Relation Extraction Using GPT Models.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:391-400. eCollection 2024.
6
GPT-4 as an X data annotator: Unraveling its performance on a stance classification task.
PLoS One. 2024 Aug 15;19(8):e0307741. doi: 10.1371/journal.pone.0307741. eCollection 2024.
7
A comparison of chain-of-thought reasoning strategies across datasets and models.
PeerJ Comput Sci. 2024 Apr 30;10:e1999. doi: 10.7717/peerj-cs.1999. eCollection 2024.
8
Extraction of semantic biomedical relations from text using conditional random fields.
BMC Bioinformatics. 2008 Apr 23;9:207. doi: 10.1186/1471-2105-9-207.
9
BertSRC: transformer-based semantic relation classification.
BMC Med Inform Decis Mak. 2022 Sep 6;22(1):234. doi: 10.1186/s12911-022-01977-5.
10
Emergent analogical reasoning in large language models.
Nat Hum Behav. 2023 Sep;7(9):1526-1541. doi: 10.1038/s41562-023-01659-w. Epub 2023 Jul 31.

引用本文的文献

1
Large language models can extract metadata for annotation of human neuroimaging publications.
Front Neuroinform. 2025 Aug 20;19:1609077. doi: 10.3389/fninf.2025.1609077. eCollection 2025.
2
Reduction of supervision for biomedical knowledge discovery.
BMC Bioinformatics. 2025 Sep 1;26(1):225. doi: 10.1186/s12859-025-06187-0.
3
How important is domain-specific language model pretraining and instruction finetuning for biomedical relation extraction?
Nat Lang Process Inf Syst. 2026;15836:80-94. doi: 10.1007/978-3-031-97141-9_6. Epub 2025 Jul 1.
4
Large Language Models Can Extract Metadata for Annotation of Human Neuroimaging Publications.
bioRxiv. 2025 May 14:2025.05.13.653828. doi: 10.1101/2025.05.13.653828.
5
ERNIE-UIE: Advancing information extraction in Chinese medical knowledge graph.
PLoS One. 2025 May 29;20(5):e0325082. doi: 10.1371/journal.pone.0325082. eCollection 2025.
8
LLM-IE: a python package for biomedical generative information extraction with large language models.
JAMIA Open. 2025 Mar 12;8(2):ooaf012. doi: 10.1093/jamiaopen/ooaf012. eCollection 2025 Apr.

本文引用的文献

1
Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports.
J Biomed Inform. 2012 Oct;45(5):885-92. doi: 10.1016/j.jbi.2012.04.008. Epub 2012 Apr 25.
2
ChemProt: a disease chemical biology database.
Nucleic Acids Res. 2011 Jan;39(Database issue):D367-72. doi: 10.1093/nar/gkq906. Epub 2010 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验