Suppr超能文献

利用大语言模型增强新冠疫苗接种与不良事件关联的关系抽取

Enhancing Relation Extraction for COVID-19 Vaccine Shot-Adverse Event Associations with Large Language Models.

作者信息

Li Yiming, Viswaroopan Deepthi, He William, Li Jianfu, Zuo Xu, Xu Hua, Tao Cui

机构信息

The University of Texas Health Science Center at Houston.

Duke University.

出版信息

Res Sq. 2025 Mar 17:rs.3.rs-6201919. doi: 10.21203/rs.3.rs-6201919/v1.

Abstract

OBJECTIVE

The rapid evolution of the COVID-19 virus has led to the development of different vaccine shots, each designed to combat specific variants and enhance overall efficacy. While vaccines have been crucial in controlling the spread of the virus, they can also cause adverse events (AEs). Understanding these relationships is vital for vaccine safety monitoring and surveillance.

METHODS

In our study, we collected data from the Vaccine Adverse Event Reporting System (VAERS) and social media platforms (Twitter and Reddit) to extract relationships between COVID-19 vaccine shots and adverse events. The dataset comprised 771 relation pairs, enabling a comprehensive analysis of adverse event patterns. We employed state-of-the-art GPT models, including GPT-3.5 and GPT-4, alongside traditional models such as Recurrent Neural Networks (RNNs) and BioBERT, to extract these relationships. Additionally, we used two sets of post-processing rules to further refine the extracted relations. Evaluation metrics including precision, recall, and F1-score were used to assess the performance of our models in extracting these relationships accurately.

RESULTS

The most commonly reported AEs following the primary series of COVID-19 vaccines include arm soreness, fatigue, and headache, while the spectrum of AEs following boosters is more diverse. In relation extraction, fine-tuned GPT-3.5 with Sentence-based Relation Identification achieved the highest precision of 0.94 and a perfect recall of 1, resulting in an impressive F1 score of 0.97.

CONCLUSION

This study advances biomedical informatics by showing how large language models and deep learning models can extract relationships between vaccine shots and adverse events from VAERS and social media. These findings improve vaccine safety monitoring and clinical practice by enhancing our understanding of post-vaccination symptoms. The study sets a precedent for future research in natural language processing and biomedical informatics, with potential applications in pharmacovigilance and clinical decision-making.

摘要

目的

新冠病毒的快速演变导致了不同疫苗的研发,每种疫苗都旨在对抗特定变体并提高总体效力。虽然疫苗在控制病毒传播方面至关重要,但它们也可能引发不良事件(AE)。了解这些关系对于疫苗安全监测至关重要。

方法

在我们的研究中,我们从疫苗不良事件报告系统(VAERS)和社交媒体平台(推特和红迪网)收集数据,以提取新冠疫苗与不良事件之间的关系。数据集包含771个关系对,能够对不良事件模式进行全面分析。我们采用了包括GPT-3.5和GPT-4在内的最先进的GPT模型,以及循环神经网络(RNN)和生物BERT等传统模型来提取这些关系。此外,我们使用了两组后处理规则来进一步完善提取的关系。使用包括精确率、召回率和F1分数在内的评估指标来评估我们的模型在准确提取这些关系方面的性能。

结果

新冠疫苗基础免疫系列之后最常报告的不良事件包括手臂酸痛、疲劳和头痛,而加强针之后的不良事件范围则更多样化。在关系提取方面,基于句子关系识别微调的GPT-3.5实现了最高精确率0.94和完美召回率1,F1分数高达0.97。

结论

本研究通过展示大语言模型和深度学习模型如何从VAERS和社交媒体中提取疫苗与不良事件之间的关系,推动了生物医学信息学的发展。这些发现通过增强我们对疫苗接种后症状的理解,改善了疫苗安全监测和临床实践。该研究为自然语言处理和生物医学信息学的未来研究树立了先例,在药物警戒和临床决策方面具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26bd/11957213/47a0c6911a96/nihpp-rs6201919v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验