Li Jin-Yu, Liu Jian-Xiang
State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
Stress Biol. 2022 Jul 12;2(1):27. doi: 10.1007/s44154-022-00051-4.
Rice (Oryza sativa L.) is a staple crop that feeds over half the world's population. High temperature stress is a great threaten to sustainable agriculture and leads to yield loss and impaired grain quality in major crops. Rice is sensitive to heat stress at almost all the growth stages and the molecular mechanisms underlying responses to heat stress in rice is emerging. Through quantitative trait locus (QTL) mapping, a recent study conducted by Zhang et al. shows that one genetic locus Thermo-tolerance 3 (TT3) contains two genes that are required for thermotolerance in rice. The TT3.1-TT3.2 genetic module in rice links the plasma membrane to chloroplasts to protect chloroplasts from heat stress damage and increases grain yield under heat stress conditions. This breakthrough provides a promising strategy for future breeding of high temperature resilient crops.
水稻(Oryza sativa L.)是一种主食作物,养活了世界上一半以上的人口。高温胁迫对可持续农业构成巨大威胁,并导致主要作物产量损失和谷物品质下降。水稻在几乎所有生长阶段都对热胁迫敏感,水稻对热胁迫响应的分子机制正在显现。通过数量性状位点(QTL)定位,Zhang等人最近进行的一项研究表明,一个基因位点耐热性3(TT3)包含两个水稻耐热性所需的基因。水稻中的TT3.1-TT3.2基因模块将质膜与叶绿体连接起来,以保护叶绿体免受热胁迫损伤,并在热胁迫条件下提高谷物产量。这一突破为未来培育耐高温作物提供了一个有前景的策略。