Suppr超能文献

曲古抑菌素 A 可高效实现人多能干细胞的 CRISPR-Cas9 基因编辑。

Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells.

机构信息

Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA.

出版信息

CRISPR J. 2023 Oct;6(5):473-485. doi: 10.1089/crispr.2023.0033. Epub 2023 Sep 7.

Abstract

Genome-edited human-induced pluripotent stem cells (iPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. Despite the development of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the gene editing process is inefficient and can take several weeks to months to generate edited iPSC clones. We developed a strategy to improve the efficiency of the iPSC gene editing process via application of a small-molecule, trichostatin A (TSA), a Class I and II histone deacetylase inhibitor. We observed that TSA decreased global chromatin condensation and further resulted in increased gene-editing efficiency of iPSCs by twofold to fourfold while concurrently ensuring no increased off-target effects. The edited iPSCs could be clonally expanded while maintaining genomic integrity and pluripotency. The rapid generation of therapeutically relevant gene-edited iPSCs could be enabled by these findings.

摘要

基因组编辑的人类诱导多能干细胞(iPSC)在疾病建模、药物发现和再生医学中有广泛的应用。尽管已经开发出了成簇规律间隔短回文重复(CRISPR)-Cas9 系统,但基因编辑过程效率低下,可能需要数周甚至数月才能生成编辑后的 iPSC 克隆。我们开发了一种策略,通过应用一种小分子,曲古抑菌素 A(TSA),一种 I 类和 II 类组蛋白去乙酰化酶抑制剂,来提高 iPSC 基因编辑过程的效率。我们观察到 TSA 降低了全局染色质的凝聚,进而使 iPSC 的基因编辑效率提高了两倍到四倍,同时确保没有增加脱靶效应。编辑后的 iPSC 可以在保持基因组完整性和多能性的情况下进行克隆扩增。这些发现可以使具有治疗意义的基因编辑 iPSC 的快速生成成为可能。

相似文献

1
Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells.
CRISPR J. 2023 Oct;6(5):473-485. doi: 10.1089/crispr.2023.0033. Epub 2023 Sep 7.
3
A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
Acta Pharmacol Sin. 2020 Nov;41(11):1427-1432. doi: 10.1038/s41401-020-0452-0. Epub 2020 Jun 18.
5
CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
Curr Stem Cell Res Ther. 2018;13(4):243-251. doi: 10.2174/1574888X13666180214124800.
7
CRISPR Base Editing in Induced Pluripotent Stem Cells.
Methods Mol Biol. 2019;2045:337-346. doi: 10.1007/7651_2019_243.
8
Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls.
Stem Cell Reports. 2022 Apr 12;17(4):993-1008. doi: 10.1016/j.stemcr.2022.02.008. Epub 2022 Mar 10.
9
CRISPR/Cas9-Mediated Gene Knockout and Knockin Human iPSCs.
Methods Mol Biol. 2022;2454:559-574. doi: 10.1007/7651_2020_337.
10
CRISPR Del/Rei: a simple, flexible, and efficient pipeline for scarless genome editing.
Sci Rep. 2022 Jul 13;12(1):11928. doi: 10.1038/s41598-022-16004-w.

引用本文的文献

1
Controlling CRISPR-Cas9 genome editing in human cells using a molecular glue degrader.
Mol Ther Nucleic Acids. 2025 Jul 21;36(3):102640. doi: 10.1016/j.omtn.2025.102640. eCollection 2025 Sep 9.
2
Molecular mechanisms and functions of protein acetylation in sepsis and sepsis-associated organ dysfunction.
Cell Mol Biol Lett. 2025 Jul 26;30(1):91. doi: 10.1186/s11658-025-00773-z.
4
Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches.
Int J Mol Sci. 2024 Feb 20;25(5):2456. doi: 10.3390/ijms25052456.

本文引用的文献

1
Chromatin context-dependent regulation and epigenetic manipulation of prime editing.
Cell. 2024 May 9;187(10):2411-2427.e25. doi: 10.1016/j.cell.2024.03.020. Epub 2024 Apr 11.
2
Identification of epigenetic modulators as determinants of nuclear size and shape.
Elife. 2023 May 23;12:e80653. doi: 10.7554/eLife.80653.
3
Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.
Nat Biotechnol. 2023 Apr;41(4):500-512. doi: 10.1038/s41587-022-01527-4. Epub 2022 Nov 24.
4
Precise genomic editing of pathogenic mutations in rescues dilated cardiomyopathy.
Sci Transl Med. 2022 Nov 23;14(672):eade1633. doi: 10.1126/scitranslmed.ade1633.
5
Structural basis for Cas9 off-target activity.
Cell. 2022 Oct 27;185(22):4067-4081.e21. doi: 10.1016/j.cell.2022.09.026.
6
FACS-assisted CRISPR-Cas9 genome editing of human induced pluripotent stem cells.
STAR Protoc. 2022 Dec 16;3(4):101680. doi: 10.1016/j.xpro.2022.101680. Epub 2022 Sep 16.
8
Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites.
Nat Cell Biol. 2022 Sep;24(9):1433-1444. doi: 10.1038/s41556-022-00975-z. Epub 2022 Sep 5.
9
Chaperoning of the histone octamer by the acidic domain of DNA repair factor APLF.
Sci Adv. 2022 Jul 29;8(30):eabo0517. doi: 10.1126/sciadv.abo0517. Epub 2022 Jul 27.
10
Label-Free Imaging to Track Reprogramming of Human Somatic Cells.
GEN Biotechnol. 2022 Apr 1;1(2):176-191. doi: 10.1089/genbio.2022.0001. Epub 2022 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验