Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Nat Cell Biol. 2022 Sep;24(9):1433-1444. doi: 10.1038/s41556-022-00975-z. Epub 2022 Sep 5.
Here we present an approach that combines a clustered regularly interspaced short palindromic repeats (CRISPR) system that simultaneously targets hundreds of epigenetically diverse endogenous genomic sites with high-throughput sequencing to measure Cas9 dynamics and cellular responses at scale. This massive multiplexing of CRISPR is enabled by means of multi-target guide RNAs (mgRNAs), degenerate guide RNAs that direct Cas9 to a pre-determined number of well-mapped sites. mgRNAs uncovered generalizable insights into Cas9 binding and cleavage, revealing rapid post-cleavage Cas9 departure and repair factor loading at protospacer adjacent motif-proximal genomic DNA. Moreover, by bypassing confounding effects from guide RNA sequence, mgRNAs unveiled that Cas9 binding is enhanced at chromatin-accessible regions, and cleavage by bound Cas9 is more efficient near transcribed regions. Combined with light-mediated activation and deactivation of Cas9 activity, mgRNAs further enabled high-throughput study of the cellular response to double-strand breaks with high temporal resolution, revealing the presence, extent (under 2 kb) and kinetics (~1 h) of reversible DNA damage-induced chromatin decompaction. Altogether, this work establishes mgRNAs as a generalizable platform for multiplexing CRISPR and advances our understanding of intracellular Cas9 activity and the DNA damage response at endogenous loci.
在这里,我们提出了一种方法,该方法结合了簇状规律间隔短回文重复序列(CRISPR)系统,该系统可同时针对数百个具有高度多样性的表观遗传内源性基因组位点进行高通量测序,以大规模测量 Cas9 的动态和细胞反应。这种大规模的 CRISPR 多重化是通过多靶向向导 RNA(mgRNA)实现的,mgRNA 是一种简并的向导 RNA,可将 Cas9 导向预先确定数量的精确定位的位点。mgRNA 揭示了 Cas9 结合和切割的普遍见解,表明在邻近原间隔基序的基因组 DNA 处,Cas9 在切割后迅速离开并加载修复因子。此外,通过绕过向导 RNA 序列的混杂效应,mgRNA 揭示了 Cas9 结合在染色质可及区域得到增强,并且结合的 Cas9 在转录区域附近的切割效率更高。mgRNA 与光介导的 Cas9 活性的激活和失活相结合,进一步实现了 Cas9 活性对双链断裂的高通量研究,具有高时间分辨率,揭示了可逆 DNA 损伤诱导的染色质解压缩的存在、程度(小于 2kb)和动力学(~1h)。总之,这项工作确立了 mgRNA 作为一种可广泛应用的 CRISPR 多重化平台,并增进了我们对细胞内 Cas9 活性和内源性基因座 DNA 损伤反应的理解。