Suppr超能文献

基于机器学习的无标记 SERS 策略快速分类 SARS-CoV-2 变异株。

Rapid classification of SARS-CoV-2 variant strains using machine learning-based label-free SERS strategy.

机构信息

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China.

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Talanta. 2024 Jan 15;267:125080. doi: 10.1016/j.talanta.2023.125080. Epub 2023 Aug 17.

Abstract

The spread of COVID-19 over the past three years is largely due to the continuous mutation of the virus, which has significantly impeded global efforts to prevent and control this epidemic. Specifically, mutations in the amino acid sequence of the surface spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have directly impacted its biological functions, leading to enhanced transmission and triggering an immune escape effect. Therefore, prompt identification of these mutations is crucial for formulating targeted treatment plans and implementing precise prevention and control measures. In this study, the label-free surface-enhanced Raman scattering (SERS) technology combined with machine learning (ML) algorithms provide a potential solution for accurate identification of SARS-CoV-2 variants. We establish a SERS spectral database of SARS-CoV-2 variants and demonstrate that a diagnostic classifier using a logistic regression (LR) algorithm can provide accurate results within 10 min. Our classifier achieves 100% accuracy for Beta (B.1.351/501Y.V2), Delta (B.1.617), Wuhan (COVID-19) and Omicron (BA.1) variants. In addition, our method achieves 100% accuracy in blind tests of positive and negative human nasal swabs based on the LR model. This method enables detection and classification of variants in complex biological samples. Therefore, ML-based SERS technology is expected to accurately discriminate various SARS-CoV-2 variants and may be used for rapid diagnosis and therapeutic decision-making.

摘要

过去三年中,COVID-19 的传播在很大程度上是由于病毒的持续突变,这极大地阻碍了全球预防和控制这一流行病的努力。具体来说,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)表面刺突(S)蛋白的氨基酸序列突变直接影响其生物学功能,导致传播增强,并引发免疫逃逸效应。因此,及时识别这些突变对于制定有针对性的治疗计划和实施精确的预防和控制措施至关重要。在这项研究中,无标记表面增强拉曼散射(SERS)技术结合机器学习(ML)算法为准确识别 SARS-CoV-2 变体提供了一种潜在的解决方案。我们建立了 SARS-CoV-2 变体的 SERS 光谱数据库,并证明使用逻辑回归(LR)算法的诊断分类器可以在 10 分钟内提供准确的结果。我们的分类器对 Beta(B.1.351/501Y.V2)、Delta(B.1.617)、武汉(COVID-19)和奥密克戎(BA.1)变体的准确率达到 100%。此外,我们的方法基于 LR 模型在对阳性和阴性人类鼻腔拭子的盲测中达到了 100%的准确率。该方法能够检测和分类复杂生物样本中的变体。因此,基于 ML 的 SERS 技术有望准确区分各种 SARS-CoV-2 变体,并可能用于快速诊断和治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验