Moitra Parikshit, Chaichi Ardalan, Abid Hasan Syed Mohammad, Dighe Ketan, Alafeef Maha, Prasad Alisha, Gartia Manas Ranjan, Pan Dipanjan
Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, United States.
Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States.
Biosens Bioelectron. 2022 Jul 15;208:114200. doi: 10.1016/j.bios.2022.114200. Epub 2022 Mar 22.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has been characterized by the emergence of sets of mutations impacting the virus characteristics, such as transmissibility and antigenicity, presumably in response to the changing immune profile of the human population. The presence of mutations in the SARS-CoV-2 virus can potentially impact therapeutic and diagnostic test performances. We design and develop here a unique set of DNA probes i.e., antisense oligonucleotides (ASOs) which can interact with genetic sequences of the virus irrespective of its ongoing mutations. The probes, developed herein, target a specific segment of the nucleocapsid phosphoprotein (N) gene of SARS-CoV-2 with high binding efficiency which do not mutate among the known variants. Further probing into the interaction profile of the ASOs reveals that the ASO-RNA hybridization remains unaltered even for a hypothetical single point mutation at the target RNA site and diminished only in case of the hypothetical double or triple point mutations. The mechanism of interaction among the ASOs and SARS-CoV-2 RNA is then explored with a combination of surface-enhanced Raman scattering (SERS) and machine learning techniques. It has been observed that the technique, described herein, could efficiently discriminate between clinically positive and negative samples with ∼100% sensitivity and ∼90% specificity up to 63 copies/mL of SARS-CoV-2 RNA concentration. Thus, this study establishes N gene targeted ASOs as the fundamental machinery to efficiently detect all the current SARS-CoV-2 variants regardless of their mutations.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的进化特征是出现了一系列影响病毒特性(如传播性和抗原性)的突变,推测这是对人群不断变化的免疫状况的反应。SARS-CoV-2病毒中突变的存在可能会影响治疗和诊断测试的性能。我们在此设计并开发了一组独特的DNA探针,即反义寡核苷酸(ASO),它可以与病毒的基因序列相互作用,而不管其正在发生的突变如何。本文开发的探针靶向SARS-CoV-2核衣壳磷蛋白(N)基因的一个特定片段,具有高结合效率,在已知变体中不会发生突变。进一步探究ASO的相互作用概况发现,即使在靶RNA位点发生假设的单点突变,ASO-RNA杂交也保持不变,只有在假设的双点或三点突变的情况下才会减弱。然后结合表面增强拉曼散射(SERS)和机器学习技术探索ASO与SARS-CoV-2 RNA之间的相互作用机制。据观察,本文所述技术能够在SARS-CoV-2 RNA浓度高达63拷贝/毫升时,以约100%的灵敏度和约90%的特异性有效区分临床阳性和阴性样本。因此,本研究确立了靶向N基因的ASO作为有效检测所有当前SARS-CoV-2变体(无论其突变情况如何)的基本工具。